Learn R Programming

BayesianDisaggregation (version 0.1.2)

coherence_score: Coherence score (prior → posterior alignment improvement)

Description

Measures how much the posterior \(W\) improves alignment with the sectoral signal \(L\) relative to the prior \(P\). We compute the correlation increment \(\Delta\rho = \max(0,\rho(W,L)-\rho(P,L))\) using robust_cor (chooses Pearson/Spearman by larger absolute value), then map it to \([0,1]\) with mult and const: $$\mathrm{score}=\min\{1,\ \mathrm{const}+\mathrm{mult}\cdot\Delta\rho\}.$$

Usage

coherence_score(P, W, L, mult = 3, const = 0.5)

Value

Scalar coherence score in \([0,1]\).

Arguments

P

Prior matrix (\(T \times K\)); rows should sum to 1 (approximately).

W

Posterior matrix (\(T \times K\)); rows should sum to 1 (approximately).

L

Likelihood vector (length \(K\)), non-negative and summing to 1.

mult

Non-negative multiplier applied to the correlation increment (default 3.0).

const

Constant offset in \([0,1]\) (default 0.5).

Examples

Run this code
T <- 6; K <- 4
P <- matrix(runif(T*K), T); P <- P/rowSums(P)
W <- matrix(runif(T*K), T); W <- W/rowSums(W)
L <- runif(K); L <- L/sum(L)
coherence_score(P, W, L)

Run the code above in your browser using DataLab