# NOT RUN {
dataList <- create_dataList_MRMC()
fit_Bayesian_FROC(dataList,summary = FALSE)
# In the above example, we use a default values for true parameters for
# the distributions. The reason why the default values exists is difficulty
# for the user who is not familiar with FROC data nor konws the resions
# in which parameters of FROC model move.
# So, in the Bayesian model is merely model for FROC data.
# If user input the abnormal data, then the model does not fit nor converge
# in the Hamiltonian Monte Carlo simulations.
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC() )
#----------------------------------------------------------------------------------------
# plot various MRMC datasets with fixed signal distribution but change thresholds
#----------------------------------------------------------------------------------------
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(0.1,
0.2,
0.3,
0.4)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-0.1,
0.2,
0.3,
0.4)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
0.2,
0.3,
0.4)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
-0.2,
-0.3,
0.4)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
0.2,
0.3 )
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
1.2,
2.3 )
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6,
7)
))
plot_FPF_and_TPF_from_a_dataset(create_dataList_MRMC( z.truth = c(-1,
-0.5,
0,
1.2,
2.3,
3.3,
4,
5,
6,
7,
8,
9,
10)
))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab