50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

BayesianFROC (version 0.2.1)

dddd: One reader and Multiple modality data

Description

This is a subset of dd. For this dataset, the function fit_Bayesian_FROC() well works. So, even if the number of reader is one, my programm is available. Even if not available, I think it does not cause my model but my programming.

dddd$M

5 modalities

dddd$C

5 Confidence levels

dddd$Q

1 readers

Arguments

Details

Model converged in 2019 Jun 21.

Contents of dddd

NL = 142 (Number of Lesions)

NI = 199 (Number of Images)

Contents:

Multiple readers and multiple modalities case, i.e., MRMC case

---------------------------------------------------------------------------------------------------

ModalityID ReaderID Confidence levels No. of false alarms No. of hits.
q m c f h
-------------- ------------- ------------------------ ------------------- ----------------
1 1 5 0 50
1 1 4 4 30
1 1 3 20 11
1 1 2 29 5
1 1 1 21 1
2 1 5 1 52
2 1 4 1 25
2 1 3 21 13
2 1 2 24 4
2 1 1 23 1
3 1 5 1 43
3 1 4 7 29
3 1 3 13 11
3 1 2 28 6
3 1 1 19 0
4 1 5 1 61
4 1 4 4 19
4 1 3 18 12
4 1 2 21 9
4 1 1 23 3
5 1 5 0 35
5 1 4 2 29
5 1 3 19 18
5 1 2 23 9
5 1 1 18 0

---------------------------------------------------------------------------------------------------

The reason why the author made this data dddd is it has only one reader. My program well work for more than two reader and more than two modality case. However, the only one modality or only two modalitly is very special case for programming perspective, and thus the author had to confirm whether my program well work in such cases. For this dataset, the function fit_Bayesian_FROC() well works. So, even if the number of reader is one, my programm is available. Even if not available, I think it does not cause my model but my programming.

References

Example data of Jafroc software

See Also

dataList.Chakra.Web dataList.Chakra.Web.orderd dd

Examples

Run this code
# NOT RUN {

#----------------------------------------------------------------------------------------
#                        Show data by table
#----------------------------------------------------------------------------------------



                 viewdata(BayesianFROC::dddd)




#----------------------------------------------------------------------------------------
#              make an object dddd from an object dd
#----------------------------------------------------------------------------------------



           ddd  <-  data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)

           dddd <-  ddd[ddd$q < 2,]  #  Reduce the dataset ddd, i.e., dd

ddd <- list(
           m=dddd$m,
           q=dddd$q,
           c=dddd$c,
           h=dddd$h,
           f=dddd$f,
           NL=142,
           C=max(dddd$c),
           M=max(dddd$m),
           Q=max(dddd$q)
        )

          dddd <-ddd


#----------------------------------------------------------------------------------------
#              Fit model to the object dddd
#----------------------------------------------------------------------------------------
#  Unfortunately, R CMD check require running time to be less than 5 which is difficult
#  for rstan::sampling(), thus, we cannot run the following from roxygen2 example.
#
#
#     For Fitting, execute the following R code;
#
#
#    fit <- fit_Bayesian_FROC(
#                              ite  = 1111,
#                               cha = 1,
#                           summary = F,
#                   Null.Hypothesis = F,
#                          dataList = dddd
#                                  )
#
#                                                              Revised 2019 July 10
#
#
# }

Run the code above in your browser using DataLab