
This is a subset of dd
This dataset is made, as a toy data, which is a subset of data dd
2 modalities
3 Confidence levels
2 readers
The model did not converge both null model and alternative model in 2019 Jun 21.
Contents of dddddd
NL
= 142 (Number of Lesions)
NI
= 199 (Number of Images)#'
Contents:
Multiple readers and multiple modalities case, i.e., MRMC case
---------------------------------------------------------------------------------------------------
ModalityID | ReaderID | Confidence levels | No. of false alarms | No. of hits. |
q |
m |
c |
f |
h |
-------------- | ------------- | ------------------------ | ------------------- | ---------------- |
1 | 1 | 3 | 20 | 11 |
1 | 1 | 2 | 29 | 5 |
1 | 1 | 1 | 21 | 1 |
1 | 2 | 3 | 6 | 29 |
1 | 2 | 2 | 15 | 1 |
1 | 2 | 1 | 22 | 0 |
2 | 1 | 3 | 21 | 13 |
2 | 1 | 2 | 24 | 4 |
2 | 1 | 1 | 23 | 1 |
2 | 2 | 3 | 5 | 29 |
2 | 2 | 2 | 30 | 1 |
2 | 2 | 1 | 40 | 0 |
---------------------------------------------------------------------------------------------------
Example data of Jafroc software
# NOT RUN {
#----------------------------------------------------------------------------------------
# Show data by table
#----------------------------------------------------------------------------------------
viewdata(dddddd)
####1#### ####2#### ####3#### ####4#### ####5#### ####6#### ####7#### ####8#### ####9####
#----------------------------------------------------------------------------------------
# make an object dddd from an object dd
#----------------------------------------------------------------------------------------
ddd <- data.frame(m=dd$m,q=dd$q,c=dd$c,h=dd$h,f=dd$f)
dddd <- ddd[ddd$q < 3,]
# The following code extract the first and the second modality from dd
dddd <- dddd[dddd$m < 3,] # Reduce the dataset ddd, i.e., dd
dddd <- dddd[dddd$c <4,]
ddd <- list(
m=dddd$m,
q=dddd$q,
c=dddd$c,
h=dddd$h,
f=dddd$f,
NL=142,
C=max(dddd$c),
M=max(dddd$m),
Q=max(dddd$q)
)
dddddd <-ddd
# This dataset is made in 2019 July 6, for the aim of easy exihibition
# This dataset is very minimum, and it is easy to view
# }
# NOT RUN {
#-------------------------------------------------------------------------------
# Fit a model to data dddddd
#-------------------------------------------------------------------------------
fit <- fit_Bayesian_FROC( ite = 1111,
cha = 1,
summary = F,
Null.Hypothesis = F,
dataList = dddddd )
#-------------------------------------------------------------------------------
# Draw a curves and data points to confirm goodness of fit
#-------------------------------------------------------------------------------
DrawCurves(fit,
modalityID = c(1,2),
readerID = c(1,2)
)
#-------------------------------------------------------------------------------
# When I saw the plots, the author became happy, because it was well fitted
#-------------------------------------------------------------------------------
# Good Bye, pretty crowd! 2019 July 6
# I always think who read this? My heart empty and empty.
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab