50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

BayesianFROC (version 0.2.1)

sortAUC: Make a Ranking for AUCs for MRMC Data

Description

print a modality ranking according to their AUCs.

Usage

sortAUC(StanS4class, digits = 3, simple = FALSE)

Arguments

StanS4class

An S4 object of class stanfitExtended which is an inherited class from the S4 class stanfit. This R object can be passed to the DrawCurves(), ppp() and ... etc

digits

To be passed to round() for AUC, to determine the significant digits of AUCs.

simple

Logical, TRUE or FALSE. If TRUE, then it is simple.

@export

Value

A data-frame, representing sorted ranking of modality ID and its AUC. Revised 2019 Sept 9

Details

This is a ranking. Sort a data-frame involving AUC and corresponding modality IDs.

Examples

Run this code
# NOT RUN {
 
# }
# NOT RUN {
#----------------------------------------------------------------------------------------
#            1)             Fit a model to an MRMC data-set named dd
#----------------------------------------------------------------------------------------

                    fit <- fit_Bayesian_FROC(
                                                ite  = 1111,
                                             summary = FALSE,
                                                 cha = 1,
                                            dataList = dd
                                             )



#----------------------------------------------------------------------------------------
#            1)         Sort the AUC and make a ranking table
#----------------------------------------------------------------------------------------



                              sortAUC(fit)



# Then, a ranking table will appear.

                                                               # Reviesed 2019 Sept 9

 
# }
# NOT RUN {


# }

Run the code above in your browser using DataLab