Fit a Bayesian model with GUI.
Revised 2019 Nov.
fit_GUI_Shiny_MRMC(
DF = data.frame(m = as.integer(BayesianFROC::dd$m), q =
as.integer(BayesianFROC::dd$q), c = as.integer(BayesianFROC::dd$c), h =
as.integer(BayesianFROC::dd$h), f = as.integer(BayesianFROC::dd$f)),
DF_MQC = data.frame(M = max(DF$m), Q = max(DF$q), C = max(DF$c)),
NL.max = 1111,
NI.max = 1111,
NL.initial = 142,
NI.initial = 199,
seed.initial.of.MCMC = 237410,
MCMC.chains.max = 4
)
A dataframe, cosisting of five vectors: reader ID, modality ID, confidence levels, hits, false alarms.
initial data to be fited
A data frame, consisting of three numbers, i.e., the number of modalities, readers, confidence levels. Of course, these numbers should be compatible with the variable DF
.
max number of bins indicating the maximal number in which the number of lesions can move
max number of bins indicating the maximal number in which the number of imagegs can move
Natural number indicating the initial number of lesions, Default value =142.
Natural number indicating the initial number of images, Default value =199.
positive integers indicating the initial seed of MCMC sampling. Default is 1234.
max number of bins indicating number of MCMC chains
None
In what follows, we assume that our dataset has more than two readers or modalities, namely, our dataset is MRMC case. The term imaging modality, we mean a set of imaging methods such as MRI, CT, PET, etc.
Revised 2019 Nov 25. Revised 2020 Jan
# NOT RUN {
# }
# NOT RUN {
#'## Only run examples in interactive R sessions
if (interactive()) {
#========================================================================================
# 1) Use the default User Interface
#========================================================================================
#'
#No need to consider the variables, it is sufficient in default values.
fit_GUI_Shiny()
#========================================================================================
# 2) From exsisting dataset, named dddddd or ddddd or ddd
#========================================================================================
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(dddddd))
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(ddddd))
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(ddd))
#========================================================================================
# 2) data of 11 readers and a single modality
#========================================================================================
d <- dataset_creator_for_many_Readers(1,11)
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(d))
#========================================================================================
# see = 2345678 convergence 37readers, 1 modality
#========================================================================================
v <- v_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=1,Q=37)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(d),
seed.initial.of.MCMC = 2345678,
NL.initial = d$NL,
NI.initial = d$NI)
#========================================================================================
# 2) From exsisting dataset, named dddd
#========================================================================================
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(dddd))
# This dataset named dddd is a dataset consisting of
# only a single reader and mutiple modality.
# Such a single reader and mutiple modality case had error caused
# by some reduction of array to vector.
# So, the program was fixed so that such special case is also available
# 2020 Feb 24
# To reflect the information of the number of lesions and images,
# use the following.
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(dddd),
NL.initial = dddd$NL,
NI.initial = dddd$NI)
#========================================================================================
# example
#========================================================================================
v <- v_truth_creator_for_many_readers_MRMC_data(M=2,Q=7)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=2,Q=7)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(d))
#========================================================================================
# non-convergent example
#========================================================================================
v <- v_truth_creator_for_many_readers_MRMC_data(M=3,Q=7)
m <- mu_truth_creator_for_many_readers_MRMC_data(M=3,Q=7)
d <- create_dataList_MRMC(mu.truth = m,v.truth = v)
fit_GUI_Shiny_MRMC(DF=extract_data_frame_from_dataList_MRMC(d),seed.initial.of.MCMC = 23)
}### Only run examples in interactive R sessions
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab