# Create a general prior distribution by specifying an arbitrary density function and a
# corresponding sampling function
density = function(par){
d1 = dunif(par[1], -2,6, log =TRUE)
d2 = dnorm(par[2], mean= 2, sd = 3, log =TRUE)
return(d1 + d2)
}
# The sampling is optional but recommended because the MCMCs can generate automatic starting
# conditions if this is provided
sampler = function(n=1){
d1 = runif(n, -2,6)
d2 = rnorm(n, mean= 2, sd = 3)
return(cbind(d1,d2))
}
prior <- createPrior(density = density, sampler = sampler,
lower = c(-3,-3), upper = c(3,3), best = NULL)
# Use this prior in an MCMC
ll <- function(x) sum(dnorm(x, log = T)) # multivariate normal ll
bayesianSetup <- createBayesianSetup(likelihood = ll, prior = prior)
settings = list(iterations = 1000)
out <- runMCMC(bayesianSetup = bayesianSetup, settings = settings)
# see ?createPriorDensity for how to create a new prior from this output
Run the code above in your browser using DataLab