The Adaptive Metropolis Algorithm (Haario et al. 2001)
AM(
startValue = NULL,
iterations = 10000,
nBI = 0,
parmin = NULL,
parmax = NULL,
FUN,
f = 1,
eps = 0
)
vector with the start values for the algorithm. Can be NULL if FUN is of class BayesianSetup. In this case startValues are sampled from the prior.
iterations to run
number of burnin
minimum values for the parameter vector or NULL if FUN is of class BayesianSetup
maximum values for the parameter vector or NULL if FUN is of class BayesianSetup
function to be sampled from or object of class bayesianSetup
scaling factor
small number to avoid singularity
Francesco Minunno
Haario, Heikki, Eero Saksman, and Johanna Tamminen. "An adaptive Metropolis algorithm." Bernoulli (2001): 223-242.