# Modelation of the gini coeficient with multiples variables
library(betareg)
data(ReadingSkills)
Y <- as.matrix(ReadingSkills[,1])
n <- length(Y)
X1 <- as.matrix(ReadingSkills[,2])
for(i in 1:length(X1)){
X1 <- replace(X1,X1=="yes",1)
X1 <- replace(X1,X1=="no",0)
}
X0 <- rep(1, times=n)
X1 <- as.numeric(X1)
X2 <- as.matrix(ReadingSkills[,3])
X3 <- X1*X2
X <- cbind(X0,X1,X2,X3)
Z0 <- X0
Z <- cbind(X0,X1)
burn <- 0.3
jump <- 3
nsim <- 400
bpri <- c(0,0,0,0)
Bpri <- diag(100,nrow=ncol(X),ncol=ncol(X))
gpri <- c(0,0)
Gpri <- diag(10,nrow=ncol(Z),ncol=ncol(Z))
re<-Bayesianbetareg(Y,X,Z,nsim,bpri,Bpri,gpri,Gpri,0.3,3,graph1=FALSE,graph2=FALSE)
summary(re)
Run the code above in your browser using DataLab