Learn R Programming

Bayesianbetareg (version 1.2)

BayesianbetaregEst: Bayesian beta regression

Description

Performs the Bayesian Beta Regression for joint modelling of mean and precision

Usage

BayesianbetaregEst(Y, X, Z, nsim, bpri, Bpri, gpri, Gpri, burn, jump, graph1, graph2)

Arguments

Y
object of class matrix, with the dependent variable
X
object of class matrix, with the variables for modelling the mean
Z
object of class matrix, with the variables for modelling the precision
nsim
a number that indicate the number of iterations
bpri
a vector with the initial values of beta
Bpri
a matrix with the initial values of the variance of beta
gpri
a vector with the initial values of gamma
Gpri
a matrix with the initial values of the variance of gamma
burn
a proportion that indicate the number of iterations to be burn at the beginning of the chain
jump
a number that indicate the distance between samples of the autocorrelated the chain, to be excluded from the final chain
graph1
if it is TRUE present the graph of the chains without jump and burn
graph2
if it is TRUE present the graph of the chains with jump and burn

Value

object of class bayesbetareg with the following:
Bestimado
object of class matrix with the estimated coefficients of beta
Gammaest
object of class matrix with the estimated coefficients of gamma
X
object of class matrix, with the variables for modelling the mean
Z
object of class matrix, with the variables for modelling the precision
DesvBeta
object of class matrix with the estimated desviations of beta
DesvGamma
object of class matrix with the estimated desviations of gamma
B
object of class matrix with the B values
G
object of class matrix with the G values
yestimado
object of class matrix with the fitted values of y
residuales
object of class matrix with the residuals of the regression
phi
object of class matrix with the precision terms of the regression
variance
object of class matrix with the variance terms of the regression
beta.mcmc
object of class matrix with the complete chains for beta
gamma.mcmc
object of class matrix with the complete chains for gamma
beta.mcmc.auto
object of class matrix with the chains for beta after the burned process
gamma.mcmc.auto
object of class matrix with the chains for gamma after the burned process

Details

The bayesian beta regression allow the joint modelling of mean and precision of a beta distributed variable, as is proposed in Cepeda (2001), with logit link for the mean and logarithmic for the precision.

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matem?ticas. Universidade Federal do R?o do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105. // 3.Cepeda, E. and Garrido, L. (2011). Bayesian beta regression models: joint mean and precision modeling. Universidad Nacional // 4.Cepeda, E. and Migon, H. and Garrido, L. and Achcar, J. (2012) Generalized Linear models with random effects in the two parameter exponential family. Journal of Statistical Computation and Simulation. 1, 1 13.

Examples

Run this code
# Modelation of the gini coeficient with multiples variables

library(betareg)
data(ReadingSkills)


Y <- as.matrix(ReadingSkills[,1])
n <- length(Y)
X1 <- as.matrix(ReadingSkills[,2])
for(i in 1:length(X1)){
  X1 <- replace(X1,X1=="yes",1)
  X1 <- replace(X1,X1=="no",0)
}
X0 <- rep(1, times=n)
X1 <- as.numeric(X1)
X2 <- as.matrix(ReadingSkills[,3])
X3 <- X1*X2
X <- cbind(X0,X1,X2,X3)
Z0 <-  X0 
Z <- cbind(X0,X1)

burn <- 0.3
jump <- 3
nsim <- 400

bpri <- c(0,0,0,0)
Bpri <- diag(100,nrow=ncol(X),ncol=ncol(X))
gpri <- c(0,0)
Gpri <- diag(10,nrow=ncol(Z),ncol=ncol(Z))

re<-Bayesianbetareg(Y,X,Z,nsim,bpri,Bpri,gpri,Gpri,0.3,3,graph1=FALSE,graph2=FALSE)
summary(re)

Run the code above in your browser using DataLab