Learn R Programming

Bayesianbetareg (version 1.2)

gammakernel: the probability of a gamma parameter from the probability density funcion defined by old parameters

Description

evaluate the probability of a gamma parameter from the probability density function defined by old parameters

Usage

gammakernel(X, Z, Y, gammas.n, betas.v, gammas.v, gpri, Gpri)

Arguments

X
object of class matrix, with the variables for modelling the mean
Z
object of class matrix, with the variables for modelling the variance
Y
object of class matrix, with the dependent variable
gammas.n
a vector with the gamma parameter - new parameters - to evaluate in the old p.d.f
betas.v
a vector with the beta that define the old p.d.f
gammas.v
a vector with the gamma that define the old p.d.f
gpri
a vector with the initial values of gamma
Gpri
a matrix with the initial values of the variance of gamma

Value

value
a vector with the probability for the gamma parameter from the probability density function defined by old parameters

Details

Evaluate the probability of a gamma parameter from the probability density function defined by old parameters, according with the model proposed by Cepeda(2001) and Cepeda and Gamerman(2005).

References

1. Cepeda C. E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEMDAVARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2.Cepeda, E. C. and Gamerman D. (2005). Bayesian Methodology for modeling parameters in the two-parameter exponential family. Estadistica 57, 93 105.

Examples

Run this code
# Modelation of the gini coeficient with multiples variables

library(betareg)
data(ReadingSkills)


Y <- as.matrix(ReadingSkills[,1])
n <- length(Y)
X1 <- as.matrix(ReadingSkills[,2])
for(i in 1:length(X1)){
  X1 <- replace(X1,X1=="yes",1)
  X1 <- replace(X1,X1=="no",0)
}
X0 <- rep(1, times=n)
X1 <- as.numeric(X1)
X2 <- as.matrix(ReadingSkills[,3])
X3 <- X1*X2
X <- cbind(X0,X1,X2,X3)
Z0 <-  X0 
Z <- cbind(X0,X1)
gammas.n=c(0,0)
betas.v=c(0,0,0,0)
gammas.v=c(0,0)
gpri=c(0,0)
Gpri=diag(10,nrow=ncol(Z),ncol=ncol(Z))

dengamma <- gammakernel(X,Z,Y,gammas.n,betas.v,gammas.v,gpri,Gpri)
dengamma

Run the code above in your browser using DataLab