# Modelation of the gini coeficient with multiples variables
library(betareg)
data(ReadingSkills)
Y <- as.matrix(ReadingSkills[,1])
n <- length(Y)
X1 <- as.matrix(ReadingSkills[,2])
for(i in 1:length(X1)){
X1 <- replace(X1,X1=="yes",1)
X1 <- replace(X1,X1=="no",0)
}
X0 <- rep(1, times=n)
X1 <- as.numeric(X1)
X2 <- as.matrix(ReadingSkills[,3])
X3 <- X1*X2
X <- cbind(X0,X1,X2,X3)
Z0 <- X0
Z <- cbind(X0,X1)
gammas.n=c(0,0)
betas.v=c(0,0,0,0)
gammas.v=c(0,0)
gpri=c(0,0)
Gpri=diag(10,nrow=ncol(Z),ncol=ncol(Z))
dengamma <- gammakernel(X,Z,Y,gammas.n,betas.v,gammas.v,gpri,Gpri)
dengamma
Run the code above in your browser using DataLab