bergm(model, burn.in = 1000, main.iter = 25000, sdprop = NULL, sdprior = 50, mprior = 0, theta = NULL, popMCMC = FALSE, nchains = NULL, block.iter = 1000, sdblock = NULL, sdgamma = 0.5, sdepsilon = 0.05, save = FALSE)
Murray, I., Ghahramani, Z., and MacKay, D. (2006), ``MCMC for doubly-intractable distributions,'' in Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI-06), Arlington, Virginia: AUAI Press.
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., and Morris, M. (2007), ``statnet: Software tools for the representation, visualization, analysis and simulation of network data,'' Journal of Statistical Software, 24,1-11.
Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris M. (2008), ``ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks'', 24, 1-29.
data(florentine)
# Bayesian estimation via exchange algorithm
# (population MCMC with snooker update)
flo2 <- bergm(flobusiness~edges+kstar(2),main.iter=10000, popMCMC=TRUE,sdprior=50,block.iter=1000,sdgamma=1)
Run the code above in your browser using DataLab