Learn R Programming

Bergm: Bayesian Exponential Random Graph Models

Bergm provides a comprehensive framework for Bayesian parameter estimation and model selection for exponential random graph models using advanged computational algorithms. It can also supply graphical Bayesian goodness-of-fit procedures that address the issue of model adequacy and missing data imputation.

How to cite Bergm

Caimo, A., Bouranis, L., Krause, R., and Friel, N. (2014). Statistical Network Analysis with Bergm. Journal of Statistical Software, 104(1), 1–23. doi: https://doi.org/10.18637/jss.v104.i01.

Copy Link

Version

Install

install.packages('Bergm')

Monthly Downloads

1,430

Version

5.0.7

License

GPL (>= 2)

Maintainer

Alberto Caimo

Last Published

December 6th, 2023

Functions in Bergm (5.0.7)

evidenceCJ

Evidence estimation via Chib and Jeliazkov's method
evidence

Wrapper function for evidence estimation
Bergm-package

Bayesian exponential random graph models
bergm

Parameter estimation for Bayesian ERGMs
bgof

Bayesian goodness-of-fit diagnostics for ERGMs
evidencePP

Evidence estimation via power posteriors
summary.bergm

Summary of BERGM posterior output
plot.bergm

Plot BERGM posterior output
lazega

Lazega lawyers network data
bergmC

Calibrating misspecified Bayesian ERGMs
bergmM

Parameter estimation for Bayesian ERGMs under missing data
ergmAPL

Adjustment of ERGM pseudolikelihood