Last chance! 50% off unlimited learning
Sale ends in
Compute Bessel functions
besselI.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
besselK.nuAsym(x, nu, k.max, expon.scaled = FALSE, log = FALSE)
a numeric vector of the same length as the long of x
and
nu
. (usual argument recycling is applied implicitly.)
numeric or complex
, with real part
numeric; The order (maybe fractional!) of the corresponding Bessel function.
integer number of terms in the expansion. Must be in
0:5
, currently.
logical; if TRUE
, the results are
exponentially scaled, the same as in the corresponding
BesselI()
and BesselK()
functions in order to avoid overflow
(
logical; if TRUE,
Martin Maechler
Abramowitz & Stegun , page 378, has formula 9.7.7 and 9.7.8 for the asymptotic
expansions of
The Debye polynomials
Abramowitz, M., and Stegun, I. A. (1964, etc). Handbook of mathematical functions, pp. 366, 378.
From this package Bessel: BesselI()
; further,
besselIasym()
for the case when
Further, from base: besselI
, etc.
x <- c(1:10, 20, 50, 100, 100000)
nu <- c(1, 10, 20, 50, 10^(2:10))
sapply(0:4, function(k.)
sapply(nu, function(n.)
besselI.nuAsym(x, nu=n., k.max = k., log = TRUE)))
sapply(0:4, function(k.)
sapply(nu, function(n.)
besselK.nuAsym(x, nu=n., k.max = k., log = TRUE)))
Run the code above in your browser using DataLab