data("periodontal")
Y_A <- average_scoring(periodontal$ni, periodontal$si)
Y_M <- median_scoring(periodontal$ni, periodontal$si)
# In order to compute the likelihood-based scores, we need to know theta,
# p and q which can be estimated in this example as follows:
theta_hat <- mean(periodontal$ti)
cat("The prevalence in the data is ", theta_hat, "\n")
p_hat <- with(periodontal, sum(si[ti == 0]) / sum(ni[ti == 0]))
q_hat <- with(periodontal, 1 - sum(si[ti == 1]) / sum(ni[ti == 1]))
Y_L <- likelihood_scoring(periodontal$ni, periodontal$si,
list(theta = theta_hat, p = p_hat, q = q_hat))
data("periodontal")
Y_M <- median_scoring(periodontal$ni, periodontal$si)
data("periodontal")
fit <- EMFit(periodontal$ni, periodontal$si)
Y_MAP <- MAP_scoring(periodontal$ni, periodontal$si, fit)
Run the code above in your browser using DataLab