predictive.value:
Positive and negative predictive values for a diagnostic test.
Description
This function calculates the positive and negative predictive values for a diagnostic test from the prevalence, the sensitivity and the specificity values using the Bayes' theorem. For more details, see Agresti (2018, ISBN: 978-1-119-40528-3).
Usage
predictive.value(p, Spe, Sen, plot.it = FALSE)
Arguments
p
a numeric value indicating the prevalence of the disease. It is possible to consider a numeric vector of different values for the prevalence.
Spe
a numeric value corresponding to the specificity of the diagnostic test.
Sen
a numeric value corresponding to the sensitivity of the diagnostic test.
plot.it
a logical value indicating whether the scatterplots for the prevalence values and the corresponding predictive values for the diagnostic test must be plotted.
Value
A matrix of three columns. The first column contains the vector of prevalences p. The second and third columns contain the corresponding positive and negative predictive values, respectively.
If plot.it=TRUE, the scatterplots for the prevalence values and the predictive values is are plotted.
References
Agresti, A. (2018). An introduction to categorical data analysis. John Wiley & Sons. ISBN: 978-1-119-40528-3.