
Last chance! 50% off unlimited learning
Sale ends in
This function plots the 2D-ROC curve using the point coordinates, computed by the function CalculateHUM_ROC
.Optionally visualizes the optimal threshold point, which gives the maximal accuracy of the classifier(feature) (see CalcROC
).
CalculateHUM_Plot(sel,Sn,Sp,optSn,optSp,HUM,print.optim=TRUE)
a character value, which is the name of the selected feature.
a numeric vector of the x-coordinates of the ROC curve, which is the specificity values of the standard ROC analysis..
a numeric vector of the y-coordinates of the ROC curve, which is the sensitivity values of the standard ROC analysis..
the optimal specificity value for 2D-ROC construction
the optimal sensitivity value for 2D-ROC construction
a numeric vector of HUM values, calculated using function CalculateHUM_seq
or CalculateHUM_Ex
.
a boolean parameter to plot the optimal threshold point on the graph. The default value is TRUE.
The function doesn't return any value.
If there exists NA values for specificity or sensitivity values, or HUM values the plotting fails and an error is triggered with message “Values are missing”.
This function's main job is to plot the 2D-ROC curve according to the given point coordinates.
Li, J. and Fine, J. P. (2008): ROC Analysis with Multiple Tests and Multiple Classes: methodology and its application in microarray studies.Biostatistics. 9 (3): 566-576. Natalia Novoselova, Cristina Della Beffa, Junxi Wang, Jialiang Li, Frank Pessler, Frank Klawonn. HUM Calculator and HUM package for R: easy-to-use software tools for multicategory receiver operating characteristic analysis<U+00BB> / Bioinformatics. <U+2013> 2014. <U+2013> Vol. 30 (11): 1635-1636 doi:10.1093/ bioinformatics/btu086.
# NOT RUN {
data(leukemia72)
# Basic example
# class label must be factor
leukemia72[,ncol(leukemia72)]<-as.factor(leukemia72[,ncol(leukemia72)])
xdata=leukemia72
indexF=names(xdata)[3]
indexClass=ncol(xdata)
label=levels(xdata[,indexClass])
indexLabel=label[1:2]
out=CalculateHUM_seq(xdata,indexF,indexClass,indexLabel)
HUM<-out$HUM
seq<-out$seq
out=CalculateHUM_ROC(xdata,indexF,indexClass,indexLabel,seq)
CalculateHUM_Plot(indexF,out$Sn,out$Sp,out$optSn,out$optSp,HUM)
# }
Run the code above in your browser using DataLab