## Not run:
#
# # get predictor variables
# library(dismo)
# predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
# pattern='grd', full.names=TRUE)
# predictors <- stack(predictor.files)
# biome.layer <- predictors[["biome"]]
# biome.layer
#
# # create dummy layers for the 5 most frequent factor levels
#
# ensemble.dummy.variables(xcat=biome.layer, most.frequent=5,
# overwrite=TRUE)
#
# # check whether dummy variables were created
# predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
# pattern='grd', full.names=TRUE)
# predictors <- stack(predictor.files)
# predictors
# names(predictors)
#
# # once dummy variables were created, avoid using the original categorical data layer
# predictors <- subset(predictors, subset=c("bio5", "bio6", "bio16", "bio17",
# "biome_1", "biome_2", "biome_7", "biome_8", "biome_13"))
# predictors
# predictors@title <- "base"
#
# # presence points
# presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
# pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]
#
# # the kfold function randomly assigns data to groups;
# # groups are used as calibration (1/5) and training (4/5) data
# groupp <- kfold(pres, 5)
# pres_train <- pres[groupp != 1, ]
# pres_test <- pres[groupp == 1, ]
#
# # choose background points
# ext <- extent(-90, -32, -33, 23)
# background <- randomPoints(predictors, n=1000, ext=ext, extf=1.00)
# colnames(background)=c('lon', 'lat')
# groupa <- kfold(background, 5)
# backg_train <- background[groupa != 1, ]
# backg_test <- background[groupa == 1, ]
#
# # fit four ensemble models (RF, GLM, BIOCLIM, DOMAIN)
# # note that dummy variables are not used for BIOCLIM and DOMAIN
# # (neither are categorical variables)
# ensemble.nofactors <- ensemble.test(x=predictors, p=pres_train, a=backg_train,
# pt=pres_test, at=backg_test,
# species.name="Bradypus",
# VIF=T,
# MAXENT=1, GBM=1, GBMSTEP=1, RF=1, GLM=1, GLMSTEP=1, GAM=1,
# GAMSTEP=1, MGCV=1, MGCVFIX=1,EARTH=1, RPART=1, NNET=1, FDA=1,
# SVM=1, SVME=1, BIOCLIM=1, DOMAIN=1, MAHAL=0,
# Yweights="BIOMOD",
# dummy.vars=c("biome_1", "biome_2", "biome_7", "biome_8", "biome_13"),
# PLOTS=FALSE, evaluations.keep=TRUE)
#
# ## End(Not run)
Run the code above in your browser using DataLab