## Not run:
# # get predictor variables
# library(dismo)
# predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
# pattern='grd', full.names=TRUE)
# predictors <- stack(predictor.files)
# predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio7", "bio8",
# "bio12", "bio16", "bio17"))
# predictors
# predictors@title <- "base"
#
# # reference area to calculate environmental ranges
# ext <- extent(-70, -50, -10, 10)
# extent.values2 <- c(-70, -50, -10, 10)
# predictors.current <- crop(predictors, y=ext)
# predictors.current <- stack(predictors.current)
#
# novel.test <- ensemble.novel.object(predictors.current, name="noveltest")
# novel.test
# novel.raster <- ensemble.novel(x=predictors, novel.object=novel.test, KML.out=T)
# novel.raster
#
# plot(novel.raster)
# # no novel conditions within reference area
# rect(extent.values2[1], extent.values2[3], extent.values2[2], extent.values2[4])
#
# # use novel conditions as a simple species suitability mapping method
# # presence points
# presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
# pres <- read.table(presence_file, header=TRUE, sep=',')[,-1]
# pres.data <- data.frame(extract(predictors, y=pres))
#
# # ranges and maps
# Bradypus.ranges1 <- ensemble.novel.object(pres.data, name="Bradypus", quantiles=F)
# Bradypus.ranges1
# Bradypus.novel1 <- ensemble.novel(x=predictors, novel.object=Bradypus.ranges1, KML.out=T)
# Bradypus.novel1
#
# par(mfrow=c(1,2))
#
# plot(Bradypus.novel1)
# points(pres[, 2] ~ pres[, 1], pch=1, col="red", cex=0.8)
#
# # use 95
# Bradypus.ranges2 <- ensemble.novel.object(pres.data, name="BradypusQuantiles", quantiles=T)
# Bradypus.ranges2
# Bradypus.novel2 <- ensemble.novel(x=predictors, novel.object=Bradypus.ranges2, KML.out=T)
# Bradypus.novel2
# plot(Bradypus.novel2)
# points(pres[, 2] ~ pres[, 1], pch=1, col="red", cex=0.8)
#
# par(mfrow=c(1,1))
#
# ## End(Not run)
Run the code above in your browser using DataLab