## Not run:
# # get predictor variables
# library(dismo)
# predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
# pattern='grd', full.names=TRUE)
# predictors <- stack(predictor.files)
# predictors <- subset(predictors, subset=c("bio1", "bio5", "bio6", "bio7", "bio8",
# "bio12", "bio16", "bio17"))
# predictors
# predictors@title <- "base"
# # choose background points
# ext <- extent(-90, -32, -33, 23)
#
# # get presence map as for example created with ensemble.raster in subfolder 'ensemble/presence'
# # presence values are values equal to 1
# presence.raster <- raster(file.choose())
#
# # let cascadeKM decide on the number of clusters
# centroids <- ensemble.centroids(presence.raster=presence.raster,
# x=predictors, an=1000, ext=ext, plotit=T)
# ensemble.zones(presence.raster=presence.raster, centroid.object=centroids,
# x=predictors, ext=ext, RASTER.species.name="Bradypus", KML.out=T)
#
# # choose clusters manually
# centroids <- ensemble.centroids(presence.raster=presence.raster,
# x=predictors, an=1000, ext=ext, plotit=T, centers=6)
# ensemble.zones(presence.raster=presence.raster, centroid.object=centroids,
# x=predictors, ext=ext, RASTER.species.name="Bradypus6", KML.out=T)
# ## End(Not run)
Run the code above in your browser using DataLab