marginpfvbm: Marginal probability function for a fully-visible Boltzmann machine.
Description
Computes the marginal probabilities (for values = +1 in each coordinate) under under some specified bias vector and interaction matrix, specified by bvec and Mmat, respectively.
Usage
marginpfvbm(bvec, Mmat)
Value
Vector of length n containing the marginal probabilities of +1 in each coordinate.
Arguments
bvec
Vector of length n containing real valued bias parameters.
Mmat
Symmetric n by n matrix, with zeros along the diagonal, containing the interaction parameters.
Author
Andrew T. Jones and Hien D. Nguyen
References
H.D. Nguyen and I.A. Wood (2016), Asymptotic normality of the maximum pseudolikelihood estimator for fully-visible Boltzmann machines, IEEE Transactions on Neural Networks and Learning Systems, vol. 27, pp. 897-902.
#Compute the marginal probabilities under bvec and Mmat.# Set the parameter valuesbvec <- c(0,0.5,0.25)
Mmat <- matrix(0.1,3,3) - diag(0.1,3,3)
marginpfvbm(bvec,Mmat)