if (FALSE) {
# Not run
library(BoneProfileR)
path_Hedgehog <- system.file("extdata", "Erinaceus_europaeus_fem_2-1_small.png",
package = "BoneProfileR")
bone <- BP_OpenImage(file=path_Hedgehog)
bone <- BP_DetectBackground(bone=bone, analysis="logistic")
bone <- BP_DetectForeground(bone=bone, analysis="logistic")
bone <- BP_DetectCenters(bone=bone, analysis="logistic")
bone <- BP_EstimateCompactness(bone, analysis="logistic", cut.angle = 60)
bone <- BP_FitMLCompactness(bone, analysis="logistic", twosteps=TRUE)
plot(bone, type="observations+model", analysis="logistic")
par <- BP_GetFittedParameters(bone, analysis="logistic", ML=TRUE, return.all=FALSE)[, "mean"]
options(mc.cores=parallel::detectCores())
#############################################
# Periodic analysis
#############################################
bone <- BP_FitMLPeriodicCompactness(bone, analysis="logistic", control.optim=list(trace=2),
fitted.parameters=c(par, PSin=0.001, PCos=0.001,
SSin=0.001, SCos=0.001, MinSin=0.001, MinCos=0.001,
MaxSin=0.001, MaxCos=0.001), replicates.CI=2000)
bone <- BP_FitBayesianPeriodicCompactness(bone, analysis="logistic", replicates.CI=2000)
mcmc <- RM_get(bone, RMname="logistic", valuename="mcmcPeriodic")
plot(mcmc, parameters="P", what="MarkovChain", ylim=c(0.555, 0.565), main="P parameter")
plot(bone, type="mcmcPeriodic", parameter.name="compactness", col=rainbow(128))
plot(bone, type="mcmcPeriodic", parameter.name="compactness",
col=hcl.colors(12, "YlOrRd", rev = TRUE))
plot(bone, type="mcmcPeriodic", parameter.name="averagemodel")
plot(bone, type="mcmcPeriodic", parameter.name="P",
rgb(red = 0.7, green = 0.7, blue = 0.7, alpha = 0.2))
plot(bone, type="mcmcPeriodic", parameter.name="P", ylim=c(0, 1),
rgb(red = 0.7, green = 0.7, blue = 0.7, alpha = 0.2))
}
Run the code above in your browser using DataLab