library(BoolNet)
##################################
# Example 1: identify attractors #
##################################
# load example data
data(cellcycle)
# get all synchronous attractors by exhaustive search
attractors <- getAttractors(cellcycle)
# plot attractors side by side
par(mfrow=c(2,length(attractors$attractors)))
plotAttractors(attractors)
# identifies asynchronous attractors
attractors <- getAttractors(cellcycle,
type="asynchronous", startStates=100)
plotAttractors(attractors, mode="graph")
####################################
# Example 2: reconstruct a network #
####################################
# load example data
data(yeastTimeSeries)
# perform binarization with k-means
bin <- binarizeTimeSeries(yeastTimeSeries)
# reconstruct networks from transition table
net <- reconstructNetwork(bin$binarizedMeasurements,
method="bestfit", maxK=3)
# analyze the network using a Markov chain simulation
print(markovSimulation(net, returnTable=FALSE))
Run the code above in your browser using DataLab