Learn R Programming

CASCORE (version 0.1.2)

Covariate Assisted Spectral Clustering on Ratios of Eigenvectors

Description

Functions for implementing the novel algorithm CASCORE, which is designed to detect latent community structure in graphs with node covariates. This algorithm can handle models such as the covariate-assisted degree corrected stochastic block model (CADCSBM). CASCORE specifically addresses the disagreement between the community structure inferred from the adjacency information and the community structure inferred from the covariate information. For more detailed information, please refer to the reference paper: Yaofang Hu and Wanjie Wang (2022) . In addition to CASCORE, this package includes several classical community detection algorithms that are compared to CASCORE in our paper. These algorithms are: Spectral Clustering On Ratios-of Eigenvectors (SCORE), normalized PCA, ordinary PCA, network-based clustering, covariates-based clustering and covariate-assisted spectral clustering (CASC). By providing these additional algorithms, the package enables users to compare their performance with CASCORE in community detection tasks.

Copy Link

Version

Install

install.packages('CASCORE')

Monthly Downloads

242

Version

0.1.2

License

GPL-2

Maintainer

Yaofang Hu

Last Published

July 2nd, 2023

Functions in CASCORE (0.1.2)

ADMM

Penalized Optimization Framework for Community Detection in Networks with Covariates.
CASC

Covariate Assisted Spectral Clustering.
SCORE

Spectral Clustering On Ratios-of-Eigenvectors.
nPCA

Normalized Principle Component Analysis.
Cov_based

Covariates-based Clustering.
CASCORE

Covariate Assisted Spectral Clustering on Ratios of Eigenvectors.
Net_based

Network-based Clustering.
oPCA

Ordinary Principle Component Analysis.