powered by
This function computes the correlation-based estimator for linear regression models.
CBPLinearE(X, y, lambda)
A numeric vector of the estimated coefficients for the specified model.
A numeric matrix of predictors where rows represent observations and columns represent variables.
A numeric vector of response variables.
A regularization parameter.
The correlation-based penalized linear estimator is calculated as: $$ \hat{\beta} = \text{argmin} \left\{ \sum_{i=1}^n (y_i - \mathbf{x}_i^\top \boldsymbol{\beta})^2 + \lambda \sum_{i=1}^{p-1} \sum_{j>i} \left( \frac{(\beta_i - \beta_j)^2}{1 - \rho_{ij}} + \frac{(\beta_i + \beta_j)^2}{1 + \rho_{ij}} \right) \right\} $$ where \(\rho_{ij}\) denotes the (empirical) correlation between the \(i\)th and the \(j\)th predictor.
Tutz, G., Ulbricht, J. (2009). Penalized regression with correlation-based penalty. Stat Comput 19, 239–253.
set.seed(42) n <- 100 p <- 4 X <- matrix(rnorm(n * p), n, p) beta_true <- c(0.5, -1, 2, 5) y <- X %*% beta_true + rnorm(n) lambda <- 0.1 result <- CBPLinearE(X, y, lambda = lambda) print(result)
Run the code above in your browser using DataLab