## Not run:
# ###
# ### Example: Optimal Covariate Balance
# ###
# # Run for 4-treatment case
# set.seed(1)
# # Generate random X and underlying coefficients for probability.
# # Determine probs and treatments.
# X<-cbind(rep(1,1000), mvrnorm(1000,c(0,0,0),
# Sigma=matrix(c(5,.5,-.03,.5,1,-.27,-.03,-.27,1),3,3)))
# beta<-matrix(rnorm(12),4,3)
# baseline.prob<-apply(X%*%beta,1,function(x) (1+sum(exp(x)))^-1)
# prob<-cbind(baseline.prob, exp(X%*%beta[,1])*baseline.prob,
# exp(X%*%beta[,2])*baseline.prob,
# exp(X%*%beta[,3])*baseline.prob)
# treat.latent<-runif(1000)
# treat<-factor(ifelse(treat.latent < prob[,1], 1,
# ifelse(treat.latent < (prob[,1] + prob[,2]), 2,
# ifelse(treat.latent < (prob[,1] + prob[,2] + prob[,3]),
# 3, 4))))
# X<-X[,-1]
# fit4<-CBPS(treat ~ X, ATT = FALSE)
# balance(fit4)
# ## End(Not run)
Run the code above in your browser using DataLab