k-Nearest Neighbors (KNN) wrapper for CCI (kknn-based)
wrapper_knn(
formula,
data,
train_indices,
test_indices,
metric,
metricfunc = NULL,
k = 15,
eps = 1e-15,
positive = NULL,
kernel = "optimal",
distance = 2,
...
)Numeric performance metric
Model formula
Data frame
Indices for training rows
Indices for test rows
Performance metric: "RMSE" (regression), "Kappa" (classification), or "LogLoss" (classification)
Optional custom metric function: function(actual, predictions, ...)
Integer, number of neighbors (default 15)
Small value to avoid log(0) in LogLoss calculations. Default is 1e-15.
Character. The positive class label for binary classification (used in LogLoss). Default is NULL.
Character. Weighting kernel for kknn. Default "optimal".
Numeric. Minkowski distance parameter. 2 = Euclidean. Default 2.
Additional arguments passed to kknn::kknn (e.g., ykernel, na.action)