#############################################################################
# EXAMPLE 1: DINO data example
#############################################################################
#***
# Model 1: estimate DINO model with din
mod1 <- din( sim.dino , q.matrix = sim.qmatrix , rule="DINO")
# estimate classification reliability
cdm.est.class.accuracy( mod1 , n.sims=5000)
## P_a P_a_sim P_c P_c_sim
## MLE 0.668 0.661 0.583 0.541
## MAP 0.807 0.785 0.717 0.670
## MAP_Skill1 0.924 NA 0.860 NA
## MAP_Skill2 0.786 NA 0.746 NA
## MAP_Skill3 0.937 NA 0.901 NA
#***
# Model 2: estimate DINO model with gdina
mod2 <- gdina( sim.dino , q.matrix = sim.qmatrix , rule="DINO")
# estimate classification reliability
cdm.est.class.accuracy( mod2 )
## P_a P_c
## MLE 0.675 0.598
## MAP 0.832 0.739
## MAP_Skill1 0.960 0.925
## MAP_Skill2 0.629 0.618
## MAP_Skill3 0.823 0.729
m1 <- mod1$coef[ , c("guess" , "slip" ) ]
m2 <- mod2$coef
m2 <- cbind( m1 , m2[ seq(1,18,2) , "est" ] ,
1 - m2[ seq(1,18,2) , "est" ] - m2[ seq(2,18,2) , "est" ] )
colnames(m2) <- c("g.M1" , "s.M1" , "g.M2" , "s.M2" )
## > round( m2 , 3 )
## g.M1 s.M1 g.M2 s.M2
## Item1 0.109 0.192 0.109 0.191
## Item2 0.073 0.234 0.072 0.234
## Item3 0.139 0.238 0.146 0.238
## Item4 0.124 0.065 0.124 0.009
## Item5 0.125 0.035 0.125 0.037
## Item6 0.214 0.523 0.214 0.529
## Item7 0.193 0.514 0.192 0.514
## Item8 0.246 0.100 0.246 0.100
## Item9 0.201 0.032 0.195 0.032
## Note that s (the slipping parameter) substantially differs for Item4
## for DINO estimation in 'din' and 'gdina'
Run the code above in your browser using DataLab