data(data.dcm)
# Model 1: DINA model
mod1 <- din( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix )
summary(mod1)
# Model 2: DINO model
mod2 <- din( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix , rule="DINO")
summary(mod2)
# Model 3: log-linear model (LCDM): this model is the GDINA model with the
# logit link function
mod3 <- gdina( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix , link="logit")
summary(mod3)
# Model 4: GDINA model with identity link function
mod4 <- gdina( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix )
summary(mod4)
# Model 5: GDINA additive model identity link function
mod5 <- gdina( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix , rule="ACDM")
summary(mod5)
# Model 6: GDINA additive model logit link function
mod6 <- gdina( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix , link="logit" ,
rule="ACDM")
summary(mod6)
# Model 7: reduced RUM model
mod7 <- gdina( data.dcm$data[,-1] , q.matrix=data.dcm$q.matrix , rule="RRUM")
summary(mod7)
# Model 8: latent class model with 3 classes
# randomLCA package: 4 trials
library(randomLCA)
mod8a <- randomLCA( data.dcm$data[,-1], nclass= 3 , verbose=TRUE , notrials=4)
# rasch.mirtlc function in sirt package
library(sirt)
mod8b <- rasch.mirtlc( data.dcm$data[,-1] , Nclasses=3 , nstarts=4 )
summary(mod8a)
summary(mod8b)
Run the code above in your browser using DataLab