#############################################################################
# EXAMPLE 1: Model fit for sim.dina
#############################################################################
data(sim.dina)
data(sim.qmatrix)
#*** Model 1: DINA model for DINA simulated data
mod1 <- din(sim.dina, q.matr = sim.qmatrix, rule = "DINA" )
fmod1 <- modelfit.cor.din(mod1)
summary(fmod1)
## Test of Global Model Fit
## type value p
## 1 max(X2) 8.72825 0.11279
## 2 abs(fcor) 0.14287 0.07954
##
## -> not a significant misfit!
##
## Fit Statistics
## est jkunits jk_est jk_se est_low est_upp
## MADcor 0.03025 20 0.02112 0.00626 0.00886 0.03338
## SRMSR 0.03980 20 0.02423 0.00647 0.01155 0.03691
## MX2 0.71949 20 0.86922 0.20546 0.46652 1.27192
## 100*MADRESIDCOV 0.67140 20 0.47055 0.14292 0.19043 0.75067
## MADQ3 0.06184 20 0.03730 0.00895 0.01976 0.05485
# look at first five item pairs with highest local dependence
itempairs <- fmod1$itempairs
itempairs <- itempairs[ order( itempairs$X2 , decreasing=TRUE ) , ]
itempairs[ 1:5 , c("item1","item2" , "X2" , "X2_p" , "X2_p.holm" , "Q3") ]
## item1 item2 X2 X2_p X2_p.holm Q3
## 29 Item5 Item8 8.728248 0.003133174 0.1127943 -0.26616414
## 32 Item6 Item8 2.644912 0.103881881 1.0000000 0.04873154
## 21 Item3 Item9 2.195011 0.138458201 1.0000000 0.05948456
## 10 Item2 Item4 1.449106 0.228671389 1.0000000 -0.08036216
## 30 Item5 Item9 1.393583 0.237800911 1.0000000 -0.01934420
#*** Model 2: DINO model for DINA simulated data
mod2 <- din(sim.dina, q.matr = sim.qmatrix, rule = "DINO" )
fmod2 <- modelfit.cor.din(mod2 , jkunits=10 ) # 10 jackknife units
summary(fmod2)
## Test of Global Model Fit
## type value p
## 1 max(X2) 13.13913 0.01041
## 2 abs(fcor) 0.19885 0.00134
##
## -> significant model misfit
##
## Fit Statistics
## est jkunits jk_est jk_se est_low est_upp
## MADcor 0.05552 10 0.04096 0.00931 0.02271 0.05922
## SRMSR 0.07203 10 0.04508 0.02066 0.00458 0.08559
## MX2 2.20449 10 2.62061 1.26135 0.14837 5.09285
## 100*MADRESIDCOV 1.22491 10 0.87759 0.21814 0.45004 1.30514
## MADQ3 0.07294 10 0.05535 0.01257 0.03071 0.07999
#*** Model 3: estimate DINA model with gdina function
mod3 <- gdina( sim.dina , q.matr = sim.qmatrix , rule="DINA" )
fmod3 <- modelfit.cor.din( mod3 , jkunits=0 ) # no Jackknife estimation
summary(fmod3)
## Test of Global Model Fit
## type value p
## 1 max(X2) 8.75621 0.11108
## 2 abs(fcor) 0.14325 0.07763
##
## Fit Statistics
## est
## MADcor 0.03010
## SRMSR 0.03981
## MX2 0.71909
## 100*MADRESIDCOV 0.66825
## MADQ3 0.06202
Run the code above in your browser using DataLab