## Not run:
# #############################################################################
# # EXAMPLE 1: Model comparison sim.dina dataset
# #############################################################################
#
# data(sim.dina)
# data(sim.qmatrix)
# dat <- sim.dina
# q.matrix <- sim.qmatrix
#
# #*** Model 0: DINA model with equal guessing and slipping parameters
# mod0 <- din( dat , q.matrix , guess.equal=TRUE , slip.equal = TRUE )
# summary(mod0)
#
# #*** Model 1: DINA model
# mod1 <- din( dat , q.matrix )
# summary(mod1)
#
# #*** Model 2: DINO model
# mod2 <- din( dat , q.matrix , rule="DINO")
# summary(mod2)
#
# #*** Model 3: Additive GDINA model
# mod3 <- gdina( dat , q.matrix , rule="ACDM")
# summary(mod3)
#
# #*** Model 4: GDINA model
# mod4 <- gdina( dat , q.matrix , rule="GDINA")
# summary(mod4)
#
# # model comparisons
# res <- IRT.compareModels( mod0 , mod1 , mod2 , mod3 , mod4 )
# res
# ## > res
# ## $IC
# ## Model loglike Deviance Npars Nobs AIC BIC AIC3 AICc CAIC
# ## 1 mod0 -2176.482 4352.963 9 400 4370.963 4406.886 4379.963 4371.425 4415.886
# ## 2 mod1 -2042.378 4084.756 25 400 4134.756 4234.543 4159.756 4138.232 4259.543
# ## 3 mod2 -2086.805 4173.610 25 400 4223.610 4323.396 4248.610 4227.086 4348.396
# ## 4 mod3 -2048.233 4096.466 32 400 4160.466 4288.193 4192.466 4166.221 4320.193
# ## 5 mod4 -2026.633 4053.266 41 400 4135.266 4298.917 4176.266 4144.887 4339.917
# ##
# # -> The DINA model (mod1) performed best in terms of AIC.
# ## $LRtest
# ## Model1 Model2 Chi2 df p
# ## 1 mod0 mod1 268.20713 16 0.000000e+00
# ## 2 mod0 mod2 179.35362 16 0.000000e+00
# ## 3 mod0 mod3 256.49745 23 0.000000e+00
# ## 4 mod0 mod4 299.69671 32 0.000000e+00
# ## 5 mod1 mod3 -11.70967 7 1.000000e+00
# ## 6 mod1 mod4 31.48959 16 1.164415e-02
# ## 7 mod2 mod3 77.14383 7 5.262457e-14
# ## 8 mod2 mod4 120.34309 16 0.000000e+00
# ## 9 mod3 mod4 43.19926 9 1.981445e-06
# ##
# # -> The GDINA model (mod4) was superior to the other models in terms
# # of the likelihood ratio test.
#
# # get an overview with summary
# summary(res)
# summary(res,extended=FALSE)
#
# #*******************
# # applying model comparison for objects of class IRT.modelfit
#
# # compute model fit statistics
# fmod0 <- IRT.modelfit(mod0)
# fmod1 <- IRT.modelfit(mod1)
# fmod4 <- IRT.modelfit(mod4)
#
# # model comparison
# res <- IRT.compareModels( fmod0 , fmod1 , fmod4 )
# res
# ## $IC
# ## Model loglike Deviance Npars Nobs AIC BIC AIC3
# ## mod0 mod0 -2176.482 4352.963 9 400 4370.963 4406.886 4379.963
# ## mod1 mod1 -2042.378 4084.756 25 400 4134.756 4234.543 4159.756
# ## mod4 mod4 -2026.633 4053.266 41 400 4135.266 4298.917 4176.266
# ## AICc CAIC maxX2 p_maxX2 MADcor SRMSR
# ## mod0 4371.425 4415.886 118.172707 0.0000000 0.09172287 0.10941300
# ## mod1 4138.232 4259.543 8.728248 0.1127943 0.03025354 0.03979948
# ## mod4 4144.887 4339.917 2.397241 1.0000000 0.02284029 0.02989669
# ## X100.MADRESIDCOV MADQ3 MADaQ3
# ## mod0 1.9749936 0.08840892 0.08353917
# ## mod1 0.6713952 0.06184332 0.05923058
# ## mod4 0.5148707 0.07477337 0.07145600
# ##
# ## $LRtest
# ## Model1 Model2 Chi2 df p
# ## 1 mod0 mod1 268.20713 16 0.00000000
# ## 2 mod0 mod4 299.69671 32 0.00000000
# ## 3 mod1 mod4 31.48959 16 0.01164415
# ## End(Not run)
Run the code above in your browser using DataLab