## Not run:
# #############################################################################
# # EXAMPLE 1: Several models for sim.dina data
# #############################################################################
#
# data(sim.dina)
# data(sim.qmatrix)
#
# #--- Model 1: GDINA model
# mod1 <- gdina( data = sim.dina , q.matrix = sim.qmatrix)
# summary(mod1)
# dmod1 <- IRT.data(mod1)
# str(dmod1)
#
# #--- Model 2: DINA model
# mod2 <- din( data = sim.dina , q.matrix = sim.qmatrix)
# summary(mod2)
# dmod2 <- IRT.data(mod2)
#
# #--- Model 3: Rasch model with gdm function
# mod3 <- gdm( data = sim.dina , irtmodel="1PL" , theta.k=seq(-4,4,length=11) ,
# centered.latent=TRUE )
# summary(mod3)
# dmod3 <- IRT.data(mod3)
#
# #--- Model 4: Latent class model with two classes
#
# dat <- sim.dina
# I <- ncol(dat)
#
# # define design matrices
# TP <- 2 # two classes
# # The idea is that latent classes refer to two different "dimensions".
# # Items load on latent class indicators 1 and 2, see below.
# Xdes <- array(0 , dim=c(I,2,2,2*I) )
# items <- colnames(dat)
# dimnames(Xdes)[[4]] <- c(paste0( colnames(dat) , "Class" , 1),
# paste0( colnames(dat) , "Class" , 2) )
# # items, categories , classes , parameters
# # probabilities for correct solution
# for (ii in 1:I){
# Xdes[ ii , 2 , 1 , ii ] <- 1 # probabilities class 1
# Xdes[ ii , 2 , 2 , ii+I ] <- 1 # probabilities class 2
# }
# # estimate model
# mod4 <- slca( dat , Xdes=Xdes , maxiter=30 )
# summary(mod4)
# dmod4 <- IRT.data(mod4)
# ## End(Not run)
Run the code above in your browser using DataLab