Learn R Programming

CDM (version 4.991-1)

IRT.jackknife: Jackknifing an Item Response Model

Description

This function performs a Jackknife procedure for estimating standard errors for an item response model. The replication design must be defined by IRT.repDesign. Model fit is also assessed via Jackknife.

Statistical inference for derived parameters is performed by IRT.derivedParameters with a fitted object of class IRT.jackknife and a list with defining formulas.

Usage

IRT.jackknife(object,repDesign , ... )
IRT.derivedParameters(jkobject, derived.parameters )
"IRT.jackknife"(object, repDesign, ...)
"coef"(object, bias.corr=FALSE, ...)
"vcov"(object, ...)

Arguments

object
Objects for which S3 method IRT.jackknife is defined.
repDesign
Replication design generated by IRT.repDesign.
jkobject
Object of class IRT.jackknife.
derived.parameters
List with defined derived parameters (see Example 2, Model 2).
bias.corr
Optional logical indicating whether a bias correction should be employed.
...
Further arguments to be passed.

Value

List with following entries
jpartable
Parameter table with Jackknife estimates
parsM
Matrix with replicated statistics
vcov
Variance covariance matrix of parameters

Examples

Run this code
## Not run: 
# library(BIFIEsurvey)	
# 	
# #############################################################################
# # EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample
# #############################################################################
# 
# data(data.timss11.G4.AUT.part)
# dat <- data.timss11.G4.AUT.part$data
# q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# # extract items
# items <- paste( q.matrix$item )
# 
# # generate replicate design
# rdes <- IRT.repDesign( data= dat,  wgt = "TOTWGT" , jktype="JK_TIMSS" , 
#                    jkzone = "JKCZONE" , jkrep = "JKCREP" )
# 
# #--- Model 1: fit multiple group GDINA model
# mod1 <- gdina( dat[,items] , q.matrix =q.matrix[,-1] ,  
#             weights=dat$TOTWGT , group=dat$female +1  )
# # jackknife Model 1
# jmod1 <- IRT.jackknife( object = mod1 , repDesign = rdes )
# summary(jmod1)
# coef(jmod1)
# vcov(jmod1)
# 
# #############################################################################
# # EXAMPLE 2: DINA model | Simple random sampling
# #############################################################################
# 
# data(sim.dina)
# data(sim.qmatrix)
# dat <- sim.dina
# q.matrix <- sim.qmatrix
# 
# # generate replicate design with 50 jackknife zones (50 random groups)
# rdes <- IRT.repDesign( data= dat ,  jktype="JK_RANDOM" , ngr=50 )
# 
# #--- Model 1: DINA model
# mod1 <- gdina( dat, q.matrix =q.matrix , rule="DINA")
# summary(mod1)
# # jackknife DINA model
# jmod1 <- IRT.jackknife( object = mod1 , repDesign = rdes )
# summary(jmod1)
# 
# #--- Model 2: DINO model
# mod2 <- gdina( dat, q.matrix =q.matrix , rule="DINO")
# summary(mod2)
# # jackknife DINA model
# jmod2 <- IRT.jackknife( object = mod2 , repDesign = rdes )
# summary(jmod2)
# IRT.compareModels( mod1 , mod2 )
# 
# # statistical inference for derived parameters
# derived.parameters <- list( "skill1" = ~ 0 + I(prob_skillV1_lev1_group1) ,    
#     "skilldiff12" = ~ 0 + I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ) ,
#     "skilldiff13" = ~ 0 + I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 )    
#                     )                    
# jmod2a <- IRT.derivedParameters( jmod2 , derived.parameters=derived.parameters )
# summary(jmod2a)
# coef(jmod2a)
# ## End(Not run)

Run the code above in your browser using DataLab