## Not run:
# data(data.dtmr)
# data <- data.dtmr$data
# q.matrix <- data.dtmr$q.matrix
# I <- ncol(data)
#
# #*** Model 1: LCDM
# # define item wise rules
# rule <- rep( "ACDM" , I )
# names(rule) <- colnames(data)
# rule[ c("M14","M17") ] <- "GDINA2"
# # estimate model
# mod1 <- CDM::gdina( data , q.matrix , linkfct="logit" , rule= rule)
# summary(mod1)
#
# #*** Model 2: DINA model
# mod2 <- CDM::gdina( data , q.matrix , rule="DINA" )
# summary(mod2)
#
# #*** Model 3: RRUM model
# mod3 <- CDM::gdina( data , q.matrix , rule="RRUM" )
# summary(mod3)
#
# #--- model comparisons
#
# # LCDM vs. DINA
# anova(mod1,mod2)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -76570.89 153141.8 69 153279.8 153729.5 1726.645 10 0
# ## 1 Model 1 -75707.57 151415.1 79 151573.1 152088.0 NA NA NA
#
# # LCDM vs. RRUM
# anova(mod1,mod3)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -75746.13 151492.3 77 151646.3 152148.1 77.10994 2 0
# ## 1 Model 1 -75707.57 151415.1 79 151573.1 152088.0 NA NA NA
#
# #--- model fit
# summary( modelfit.cor.din( mod1 ) )
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 7.74382 1.00000
# ## 2 abs(fcor) 0.04056 0.72707
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.00959
# ## SRMSR 0.01217
# ## MX2 0.75696
# ## 100*MADRESIDCOV 0.20283
# ## MADQ3 0.02220
# ## End(Not run)
Run the code above in your browser using DataLab