## Not run:
#
# data(data.hr)
#
# #*************
# # Model 1: DINA model
# mod1 <- CDM::din( data.hr$data , q.matrix = data.hr$q.matrix )
# summary(mod1) # summary
#
# # plot results
# plot(mod1)
#
# # inspect coefficients
# coef(mod1)
#
# # posterior distribution
# posterior <- mod1$posterior
# round( posterior[ 1:5 , ] , 4 ) # first 5 entries
#
# # estimate class probabilities
# mod1$attribute.patt
#
# # individual classifications
# mod1$pattern[1:5,] # first 5 entries
#
# #*************
# # Model 2: GDINA model
# mod2 <- CDM::gdina( data.hr$data , q.matrix = data.hr$q.matrix )
# summary(mod2)
#
# #*************
# # Model 3: Reduced RUM model
# mod3 <- CDM::gdina( data.hr$data , q.matrix = data.hr$q.matrix , rule="RRUM" )
# summary(mod3)
#
# #--------
# # model comparisons
#
# # DINA vs GDINA
# anova( mod1 , mod2 )
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 1 Model 1 -31391.27 62782.54 101 62984.54 63524.49 195.9099 20 0
# ## 2 Model 2 -31293.32 62586.63 121 62828.63 63475.50 NA NA NA
#
# # RRUM vs. GDINA
# anova( mod2 , mod3 )
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -31356.22 62712.43 105 62922.43 63483.76 125.7924 16 0
# ## 1 Model 1 -31293.32 62586.64 121 62828.64 63475.50 NA NA NA
#
# # DINA vs. RRUM
# anova(mod1,mod3)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 1 Model 1 -31391.27 62782.54 101 62984.54 63524.49 70.11246 4 0
# ## 2 Model 2 -31356.22 62712.43 105 62922.43 63483.76 NA NA NA
#
# #-------
# # model fit
#
# # DINA
# fmod1 <- CDM::modelfit.cor.din( mod1 , jkunits=0)
# summary(fmod1)
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 16.35495 0.03125
# ## 2 abs(fcor) 0.10341 0.01416
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.01911
# ## SRMSR 0.02445
# ## MX2 0.93157
# ## 100*MADRESIDCOV 0.39100
# ## MADQ3 0.02373
#
# # GDINA
# fmod2 <- CDM::modelfit.cor.din( mod2 , jkunits=0)
# summary(fmod2)
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 7.73670 1
# ## 2 abs(fcor) 0.07215 1
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.01830
# ## SRMSR 0.02300
# ## MX2 0.82584
# ## 100*MADRESIDCOV 0.37390
# ## MADQ3 0.02383
#
# # RRUM
# fmod3 <- CDM::modelfit.cor.din( mod3, jkunits=0)
# summary(fmod3)
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 15.49369 0.04925
# ## 2 abs(fcor) 0.10076 0.02201
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.01868
# ## SRMSR 0.02374
# ## MX2 0.87999
# ## 100*MADRESIDCOV 0.38409
# ## MADQ3 0.02416
# ## End(Not run)
Run the code above in your browser using DataLab