## Not run:
# data(data.jang)
# data <- data.jang$data
# q.matrix <- data.jang$q.matrix
#
# #*** Model 1: Reduced RUM model
# mod1 <- CDM::gdina( data , q.matrix , rule="RRUM" , conv.crit = .001 , increment.factor=1.025 )
# summary(mod1)
#
# #*** Model 2: Additive model (identity link)
# mod2 <- CDM::gdina( data , q.matrix , rule="ACDM" , conv.crit = .001 , linkfct="identity" )
# summary(mod2)
#
# #*** Model 3: DINA model
# mod3 <- CDM::gdina( data , q.matrix , rule="DINA" , conv.crit = .001 )
# summary(mod3)
#
# anova(mod1,mod2)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 88.29627 0 0
# ## 2 Model 2 -30270.88 60541.76 153 60847.76 61660.68 NA NA NA
# anova(mod1,mod3)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -30373.99 60747.97 129 61005.97 61691.38 117.9128 24 0
# ## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 NA NA NA
#
# # RRUM
# summary( CDM::modelfit.cor.din( mod1 , jkunits=0) )
# ## type value p
# ## 1 max(X2) 11.79073 0.39645
# ## 2 abs(fcor) 0.09541 0.07422
# ## est
# ## MADcor 0.01834
# ## SRMSR 0.02300
# ## MX2 0.86718
# ## 100*MADRESIDCOV 0.38690
# ## MADQ3 0.02413
#
# # additive model (identity)
# summary( CDM::modelfit.cor.din( mod2 , jkunits=0) )
# ## type value p
# ## 1 max(X2) 9.78958 1.00000
# ## 2 abs(fcor) 0.08770 0.22993
# ## est
# ## MADcor 0.01721
# ## SRMSR 0.02158
# ## MX2 0.69163
# ## 100*MADRESIDCOV 0.36343
# ## MADQ3 0.02423
#
# # DINA model
# summary( CDM::modelfit.cor.din( mod3 , jkunits=0) )
# ## type value p
# ## 1 max(X2) 13.48449 0.16020
# ## 2 abs(fcor) 0.10651 0.01256
# ## est
# ## MADcor 0.01999
# ## SRMSR 0.02495
# ## MX2 0.92820
# ## 100*MADRESIDCOV 0.42226
# ## MADQ3 0.02258
# ## End(Not run)
Run the code above in your browser using DataLab