## Not run:
# data(data.melab)
# data <- data.melab$data
# q.matrix <- data.melab$q.matrix
#
# #*** Model 1: Reduced RUM model
# mod1 <- CDM::gdina( data , q.matrix , rule="RRUM" )
# summary(mod1)
#
# #*** Model 2: GDINA model
# mod2 <- CDM::gdina( data , q.matrix , rule="GDINA" )
# summary(mod2)
#
# #*** Model 3: DINA model
# mod3 <- CDM::gdina( data , q.matrix , rule="DINA" )
# summary(mod3)
#
# #*** Model 4: 2PL model
# mod4 <- CDM::gdm( data , theta.k=seq(-6,6,len=21) , center )
# summary(mod4)
#
# #----
# # Model comparisons
#
# #*** RRUM vs. GDINA
# anova(mod1,mod2)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 1 Model 1 -20252.74 40505.48 69 40643.48 41030.60 30.88801 18 0.02966
# ## 2 Model 2 -20237.30 40474.59 87 40648.59 41136.69 NA NA NA
#
# ## -> GDINA is not superior to RRUM (according to AIC and BIC)
#
# #*** DINA vs. RRUM
# anova(mod1,mod3)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -20332.52 40665.04 55 40775.04 41083.61 159.5566 14 0
# ## 1 Model 1 -20252.74 40505.48 69 40643.48 41030.60 NA NA NA
#
# ## -> RRUM fits the data significantly better than the DINA model
#
# #*** RRUM vs. 2PL (use only AIC and BIC for comparison)
# anova(mod1,mod4)
# ## Model loglike Deviance Npars AIC BIC Chisq df p
# ## 2 Model 2 -20390.19 40780.38 43 40866.38 41107.62 274.8962 26 0
# ## 1 Model 1 -20252.74 40505.48 69 40643.48 41030.60 NA NA NA
#
# ## -> RRUM fits the data better than 2PL
#
# #----
# # Model fit statistics
#
# # RRUM
# fmod1 <- CDM::modelfit.cor.din( mod1 , jkunits=0)
# summary(fmod1)
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 10.10408 0.28109
# ## 2 abs(fcor) 0.06726 0.24023
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.01708
# ## SRMSR 0.02158
# ## MX2 0.96590
# ## 100*MADRESIDCOV 0.27269
# ## MADQ3 0.02781
#
# ## -> not a significant misfit of the RRUM model
#
# # GDINA
# fmod2 <- CDM::modelfit.cor.din( mod2 , jkunits=0)
# summary(fmod2)
# ## Test of Global Model Fit
# ## type value p
# ## 1 max(X2) 10.40294 0.23905
# ## 2 abs(fcor) 0.06817 0.20964
# ##
# ## Fit Statistics
# ## est
# ## MADcor 0.01703
# ## SRMSR 0.02151
# ## MX2 0.94468
# ## 100*MADRESIDCOV 0.27105
# ## MADQ3 0.02713
# ## End(Not run)
Run the code above in your browser using DataLab