Learn R Programming

CDM (version 4.991-1)

data.sda6: Dataset SDA6 (Jurich & Bradshaw, 2014)

Description

This is a simulated dataset of the SDA6 study according to informations given in Jurich and Bradshaw (2014).

Usage

data(data.sda6)

Arguments

Format

The datasets contains 17 items observed at 1710 students. The format is: List of 2 $ data : num [1:1710, 1:17] 0 1 0 1 0 0 0 0 1 0 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : NULL .. ..$ : chr [1:17] "MCM01" "MCM03" "MCM13" "MCM17" ... $ q.matrix:'data.frame': ..$ CM: int [1:17] 1 1 1 1 0 0 0 0 0 0 ... ..$ II: int [1:17] 0 0 0 0 1 1 1 1 0 0 ... ..$ PP: int [1:17] 0 0 0 0 0 0 0 0 1 1 ... ..$ DG: int [1:17] 0 0 0 0 0 0 0 0 0 0 ... The meaning of the skills is CM -- Critique Methods II -- Identify Improvements PP -- Protect Participants DG -- Discern Generalizability

Source

Simulated data

References

Jurich, D. P., & Bradshaw, L. P. (2014). An illustration of diagnostic classification modeling in student learning outcomes assessment. International Journal of Testing, 14, 49-72.

Examples

Run this code
## Not run: 	
# data(data.sda6)
# data <- data.sda6$data
# q.matrix <- data.sda6$q.matrix
# 
# #*** Model 1a: LCDM with gdina
# mod1a <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
#                   reduced.skillspace=FALSE )  
# summary(mod1a)
# 
# #*** Model 1b: estimate LCDM with gdm
# mod1b <- CDM::gdm( data , q.matrix=q.matrix , theta.k=c(0,1) )  
# summary(mod1b)
# 
# #*** Model 2: LCDM with hierarchy II > CM
# B <- "II > CM"
# ss2 <- CDM::skillspace.hierarchy(B=B , skill.names= colnames(q.matrix ) )
# mod2 <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
#                 skillclasses = ss2$skillspace.reduced ,
#                 reduced.skillspace=FALSE )                        
# summary(mod2)
# 
# #*** Model 3: LCDM with hierarchy II > CM and DG > CM
# B <- "II > CM
#       DG > CM"
# ss2 <- CDM::skillspace.hierarchy(B=B , skill.names= colnames(q.matrix ) )
# mod3 <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
#                skillclasses = ss2$skillspace.reduced ,
#                reduced.skillspace=FALSE )                        
# summary(mod3)
# 
# # model comparisons
# anova(mod1a,mod2)
# anova(mod1a,mod3)
# # model fit
# summary( CDM::modelfit.cor.din(mod1a))
# summary( CDM::modelfit.cor.din(mod2) )
# summary( CDM::modelfit.cor.din(mod3) )
# ## End(Not run)

Run the code above in your browser using DataLab