## Not run:
# data(data.sda6)
# data <- data.sda6$data
# q.matrix <- data.sda6$q.matrix
#
# #*** Model 1a: LCDM with gdina
# mod1a <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
# reduced.skillspace=FALSE )
# summary(mod1a)
#
# #*** Model 1b: estimate LCDM with gdm
# mod1b <- CDM::gdm( data , q.matrix=q.matrix , theta.k=c(0,1) )
# summary(mod1b)
#
# #*** Model 2: LCDM with hierarchy II > CM
# B <- "II > CM"
# ss2 <- CDM::skillspace.hierarchy(B=B , skill.names= colnames(q.matrix ) )
# mod2 <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
# skillclasses = ss2$skillspace.reduced ,
# reduced.skillspace=FALSE )
# summary(mod2)
#
# #*** Model 3: LCDM with hierarchy II > CM and DG > CM
# B <- "II > CM
# DG > CM"
# ss2 <- CDM::skillspace.hierarchy(B=B , skill.names= colnames(q.matrix ) )
# mod3 <- CDM::gdina( data , q.matrix , rule="ACDM" , linkfct="logit" ,
# skillclasses = ss2$skillspace.reduced ,
# reduced.skillspace=FALSE )
# summary(mod3)
#
# # model comparisons
# anova(mod1a,mod2)
# anova(mod1a,mod3)
# # model fit
# summary( CDM::modelfit.cor.din(mod1a))
# summary( CDM::modelfit.cor.din(mod2) )
# summary( CDM::modelfit.cor.din(mod3) )
# ## End(Not run)
Run the code above in your browser using DataLab