## Not run:
# data(data.timss03.G8.su)
# data <- data.timss03.G8.su$data[,-c(1,2)]
# q.matrix <- data.timss03.G8.su$q.matrix
#
# #*** Model 1: DINA model with complete skill space of 2^13=8192 skill classes
# mod1 <- CDM::din( data , q.matrix )
#
# #*** Model 2: Skill space approximation with 3000 skill classes instead of
# # 2^13 = 8192 classes as in Model 1
# ss2 <- CDM::skillspace.approximation( L = 3000 , K = ncol(q.matrix) )
# mod2 <- CDM::din( data , q.matrix , skillclasses = ss2 )
#
# #*** Model 3: DINA model with a hierarchical skill space
# # see Su et al. (2013): Fig. 6
# B <- "S1 > S2 > S7 > S8
# S15 > S9
# S3 > S9
# S13 > S4 > S9
# S14 > S5 > S6 > S11"
# # Note that S10 and S12 are not included in the dataset contained in this package
# skill.names <- colnames(q.matrix)
# ss3 <- CDM::skillspace.hierarchy(B=B , skill.names=skill.names)
# # The reduced skill space "only" contains 325 skill classes
# mod3 <- CDM::din( data , q.matrix , skillclasses = ss3$skillspace.reduced )
# ## End(Not run)
Run the code above in your browser using DataLab