BiCopPar2TailDep(family, par, par2=0)0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank par2 = 0).1 - -
2 $2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)$ $2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)$
3 $2^{-1/\theta}$ -
4 - $2-2^{1/\theta}$
5 - -
6 - $2-2^{1/\theta}$
7 $2^{-1/(\theta\delta)}$ $2-2^{1/\delta}$
8 - $2-2^{1/(\theta\delta)}$
9 $2^{-1/\delta}$ $2-2^{1/\theta}$
10 - $2-2^{1/\theta}$ if $\delta=1$ otherwise 0
13 - $2^{-1/\theta}$
14 $2-2^{1/\theta}$ -
16 $2-2^{1/\theta}$ -
17 $2-2^{1/\delta}$ $2^{-1/(\theta\delta)}$
18 $2-2^{1/(\theta\delta)}$ -
19 $2-2^{1/\theta}$ $2^{-1/\delta}$
20 $2-2^{1/\theta}$ if $\delta=1$ otherwise 0 -
23, 33 - -
24, 34 - -
26, 36 - -
27, 37 - -
28, 38 - -
29, 39 - -
30, 40 - -
}BiCopPar2Tau## Example 1: Gaussian copula
BiCopPar2TailDep(1,0.7)
## Example 2: t copula
BiCopPar2TailDep(2,0.7,4)Run the code above in your browser using DataLab