
Last chance! 50% off unlimited learning
Sale ends in
BiCopHfunc(u1, u2, family, par, par2=0)
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; ``survival Clayton'')
14
= rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
17
= rotated BB1 copula (180 degrees; ``survival BB1'')
18
= rotated BB6 copula (180 degrees; ``survival BB6'')
19
= rotated BB7 copula (180 degrees; ``survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
24
= rotated Gumbel copula (90 degrees)
26
= rotated Joe copula (90 degrees)
27
= rotated BB1 copula (90 degrees)
28
= rotated BB6 copula (90 degrees)
29
= rotated BB7 copula (90 degrees)
30
= rotated BB8 copula (90 degrees)
33
= rotated Clayton copula (270 degrees)
34
= rotated Gumbel copula (270 degrees)
36
= rotated Joe copula (270 degrees)
37
= rotated BB1 copula (270 degrees)
38
= rotated BB6 copula (270 degrees)
39
= rotated BB7 copula (270 degrees)
40
= rotated BB8 copula (270 degrees)
par2 = 0
).u2
given u1
, i.e., $h(u2|u1,\theta)$.u1
given u2
, i.e., $h(u1|u2,\theta)$.BiCopPDF
, BiCopCDF
, CDVineLogLik
, CDVineSeqEst
## Example 1: 4-dimensional C-vine model with mixed pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:4]
d = dim(Data)[2]
fam = c(5,1,3,14,3,2)
# sequential estimation
seqpar1 = CDVineSeqEst(Data,fam,type=1,method="itau")
# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Data[,1],Data[,2],fam[1],seqpar1$par[1])
h2 = BiCopHfunc(Data[,1],Data[,3],fam[2],seqpar1$par[2])
h3 = BiCopHfunc(Data[,1],Data[,4],fam[3],seqpar1$par[3])
# compare estimated parameters
BiCopEst(h1$hfunc1,h2$hfunc1,fam[4],method="itau")
seqpar1$par[4]
BiCopEst(h1$hfunc1,h3$hfunc1,fam[5],method="itau")
seqpar1$par[5]
## Example 2: 4-dimensional D-vine model with mixed pair-copulas
# sequential estimation
seqpar2 = CDVineSeqEst(Data,fam,type=2,method="itau")
# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Data[,1],Data[,2],fam[1],seqpar2$par[1])
h2 = BiCopHfunc(Data[,2],Data[,3],fam[2],seqpar2$par[2])
h3 = BiCopHfunc(Data[,3],Data[,4],fam[3],seqpar2$par[3])
# compare estimated parameters
BiCopEst(h1$hfunc2,h2$hfunc1,fam[4],method="itau")
seqpar2$par[4]
BiCopEst(h2$hfunc2,h3$hfunc1,fam[5],method="itau")
seqpar2$par[5]
Run the code above in your browser using DataLab