# NOT RUN {
ratings <- matrix(c( 2, 5, NaN, NaN, NaN, 4,
NaN, NaN, NaN, 1, NaN, 5,
NaN, 4, 5, NaN, 4, NaN,
4, NaN, NaN, 5, NaN, NaN,
5, NaN, 2, NaN, NaN, NaN,
NaN, 1, NaN, 4, 2, NaN),nrow=6,byrow=TRUE)
active_users <- c(1:dim(ratings)[2])
time_all <- c(rep(NaN, length(active_users)))
ratings3 <- ratings
for (ac in 1:length(active_users))
{
cat("=========== user",active_users[ac], "==================", "\n","\n")
##1
T1_start <- Sys.time()
sim <- simple_similarity(ratings, max_score=5, min_score=1, ac)
T1_end <- Sys.time()
cat(" Similar Users =", sim$sim_index, "\n","\n")
cat("Similarity Values =", sim$sim_x, "\n","\n")
##2
T2_start <- Sys.time()
ratings2 <- Score_replace(ratings, sim_index= sim$sim_index, ac)
T2_end <- Sys.time()
cat(" Predicted Scores =", ratings2[,ac], "\n","\n")
##3
T3_start <- Sys.time()
predictedItems <- simple_predict(ratings, ratings2, ac)
T3_end <- Sys.time()
cat(" Predicted Items =", predictedItems, "\n","\n")
##4
time_all[ac] <- (T1_end - T1_start) + (T2_end - T2_start) + (T3_end - T3_start)
cat(" Time =", time_all[ac], "\n","\n")
##5
ratings3[,ac] <- ratings2[,ac]
}
Mean_Time <- mean(time_all)
cat("=========== Mean Time ==================", "\n","\n")
cat(" Mean Time =", Mean_Time, "\n","\n")
cat(" Full Matrix =", "\n","\n")
print(ratings3)
# }
Run the code above in your browser using DataLab