powered by
PPC2 for censored factor models (Top-2 principal components, pure R)
PPC2.CFM( data, m, A = NULL, D = NULL, p = NULL, cens.dist = c("normal", "t", "logistic"), df = NULL, cens.method = c("winsorise", "em"), cens_prop = 0.01, surv.obj = NULL, ctrl = NULL, verbose = NULL )
Estimated loading matrix, p × 2.
Estimated unique-variance diagonal matrix, p × p.
Mean squared error of loadings (if A is provided).
Mean squared error of unique variances (if D is provided).
Relative error of loadings (if A is provided).
Relative error of unique variances (if D is provided).
Numeric matrix or data frame of dimension \(n \times p\).
Number of factors (< p).
Optional true loading matrix, used only for error calculation.
Optional true unique-variance diagonal matrix, used only for error calculation.
Number of variables (deprecated; detected automatically).
Error distribution, reserved for future use.
Degrees of freedom, reserved for future use.
Censoring handling method; currently only "winsorise" is implemented. Defaults to "winsorise".
"winsorise"
Winsorisation proportion, default 0.01.
Reserved for future use.
# \donttest{ library(CFM) obj <- CFM(n = 500, p = 12, m = 2, cens.dist = "normal") res <- PPC2.CFM(obj$data, A = obj$A, D = obj$D, cens.method = "winsorise") print(res$MSESigmaA) # }
Run the code above in your browser using DataLab