The files in the subdirectories of extdata
support the examples in the package documentation and vignettes.
Files in abundance
contain protein abundance and microbial occurrence data:
TBD+05.csv
lists genes with transcriptomic expression changes in carbon limitation stress response experiments in yeast (Tai et al., 2005). See read.expr
for an example that uses this file.
ISR+08.csv
has columns excerpted from Additional File 2 of Ishihama et al. (2008) for protein abundances in E. coli cytosol. The columns in this file are ID (Swiss-Prot ID), accession (Swiss-Prot accession), emPAI (exponentially modified protein abundance index), copynumber (emPAI-derived copy number/cell), GRAVY (Kyte-Doolittel), FunCat (FunCat class description), PSORT (PSORT localisation), ribosomal (yes/no). See read.expr
for an example that uses this file.
yeastgfp.csv.xz
Has 28 columns; the names of the first five are yORF
, gene name
, GFP tagged?
, GFP visualized?
, and abundance
. The remaining columns correspond to the 23 subcellular localizations considered in the YeastGFP project (Huh et al., 2003 and Ghaemmaghami et al., 2003) and hold values of either T
or F
for each protein. yeastgfp.csv was downloaded on 2007-02-01 from http://yeastgfp.ucsf.edu using the Advanced Search, setting options to download the entire dataset and to include localization table and abundance, sorted by orf number. See yeastgfp
and demo("yeastgfp")
for examples that use this file.
microbes.csv
has data for microbial occurrence (i.e. relative enrichement) in colorectal cancer and normal tissue. The file is from the Supporting Information of Dick (2016). This file is used by demo("bugstab")
.
Files in bison
contain BLAST results and taxonomic information for an environmental metagenome from the Bison Pool hot spring in Yellowstone National Park:
bisonN_vs_refseq57.blast.xz
, bisonS...
, bisonR...
, bisonQ...
, bisonP...
are partial tabular BLAST results for proteins in the Bison Pool Environmental Genome. Protein sequences predicted in the metagenome were downloaded from the Joint Genome Institute's IMG/M system on 2009-05-13. The target database for the searches was constructed from microbial protein sequences in National Center for Biotechnology Information (NCBI) RefSeq database version 57, representing 7415 microbial genomes. The ‘blastall’ command was used with the default setting for E value cuttoff (10.0) and options to make a tabular output file consisting of the top 20 hits for each query sequence. The function read.blast
was used to extract only those hits with E values less than or equal to 1e-5 and with sequence similarity (percent identity) at least 30 percent, and to keep only the first hit for each query sequence. The function write.blast
was used to save partial BLAST files (only selected columns). The files provided with CHNOSZ contain the first 5,000 hits for each sampling site at Bison Pool, representing between about 7 to 15 percent of the first BLAST hits after similarity and E value filtering.
gi.taxid.txt.xz
is a table that lists the sequence identifiers (gi numbers) that appear in the example BLAST files (see above), together with the corresponding taxon ids used in the NCBI databases. This file is not a subset of the complete ‘gi_taxid_prot.dmp.gz’ available at ftp://ftp.ncbi.nih.gov/pub/taxonomy/ but instead is a subset of ‘gi.taxid.txt’ generated from the RefSeq release catalog using ‘gencat.sh’ in the refseq
directory. See id.blast
for an example that uses this file and the BLAST files described above.
Files in cpetc
contain heat capacity and other thermodynamic data and parameters:
PM90.csv
Heat capacities of four unfolded aqueous proteins taken from Privalov and Makhatadze, 1990. Temperature in \(^{\circ}\)C is in the first column, and heat capacities of the proteins in J mol\(^{-1}\) K\(^{-1}\) in the remaining columns. See ionize.aa
and the vignette anintro.Rmd
for examples that uses this file.
RH95.csv
Heat capacity data for iron taken from Robie and Hemingway, 1995. Temperature in Kelvin is in the first column, heat capacity in J K\(^{-1}\) mol\(^{-1}\) in the second. See subcrt
for an example that uses this file.
RT71.csv
pH titration measurements for unfolded lysozyme (LYSC_CHICK) taken from Roxby and Tanford, 1971. pH is in the first column, net charge in the second. See ionize.aa
for an example that uses this file.
SOJSH.csv
Experimental equilibrium constants for the reaction NaCl(aq) = Na+ + Cl- as a function of temperature and pressure taken from Fig. 1 of Shock et al., 1992. Data were extracted from the figure using g3data (http://www.frantz.fi/software/g3data.php). See demo("NaCl")
for an example that uses this file.
Cp.CH4.HW97.csv
, V.CH4.HWM96.csv
Apparent molar heat capacities and volumes of CH4 in dilute aqueous solutions reported by Hn<U+011B>dkovsk<U+00FD> and Wood, 1997 and Hn<U+011B>dkovsk<U+00FD> et al., 1996. See EOSregress
and the vignette eos-regress.Rmd
for examples that use these files.
SC10_Rainbow.csv
Values of temperature (\(^{\circ}\)C), pH and logarithms of activity of , , , and for mixing of seawater and hydrothermal fluid at Rainbow field (Mid-Atlantic Ridge), taken from Shock and Canovas, 2010. See the vignette anintro.Rmd
for an example that uses this file.
SS98_Fig5a.csv
, SS98_Fig5b.csv
Values of logarithm of fugacity of \(\mathrm{O_2}\) and pH as a function of temperature for mixing of seawater and hydrothermal fluid, digitized from Figs. 5a and b of Shock and Schulte, 1998. See the vignette anintro.Rmd
for an example that uses this file.
rubisco.csv
UniProt IDs for Rubisco, ranges of optimal growth temperature of organisms, domain and name of organisms, and URL of reference for growth temperature, from Dick, 2014. See the vignette anintro.Rmd
for an example that uses this file.
Files in fasta
contain protein sequences:
EF-Tu.aln
consists of aligned sequences (394 amino acids) of elongation factor Tu (EF-Tu). The sequences correspond to those taken from UniProtKB for ECOLI (Escherichia coli), THETH (Thermus thermophilus) and THEMA (Thermotoga maritima), and reconstructed ancestral sequences taken from Gaucher et al., 2003 (maximum likelihood bacterial stem and mesophilic bacterial stem, and alternative bacterial stem). See read.fasta
for an example that uses this file.
rubisco.fasta
Sequences of Rubisco obtained from UniProt (see Dick, 2014). See the vignette anintro.Rmd
for an example that uses this file.
Files in protein
contain amino acid compositions for proteins.
See more.aa
and read.expr
for examples that use these files.
Sce.csv.xz
Data frame of amino acid composition of 6716 proteins from the Saccharomyces Genome Database (SGD).
Values in the first three columns are the ORF
names of proteins, SGDID
, and GENE
names. The remaining twenty columns (ALA
..VAL
) contain the numbers of the respective amino acids in each protein.
The sources of data for Sce.csv are the files protein_properties.tab and SGD_features.tab (for the gene names), downloaded from http://www.yeastgenome.org on 2013-08-24.
Eco.csv.xz
Amino acid compositions of 4407 proteins in Escherichia coli strain K12.
Format is the one used thermo$protein
, with columns protein holding the gene name, organism set to ECOLI, and abbrv
holding the UniProt ID.
The source of data is the file ECOLI.fas downloaded from the HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes system) FTP site (Gattiker et al., 2003) on 2010-09-25 (old URL: ftp://ftp.expasy.org/databases/hamap/complete_proteomes/fasta/bacteria).
DS11.csv
, DS13.csv
These two files contain amino acid compositions of metagenomically encoded proteins, averaged together according to functional annotation (DS11) or taxonomic affiliation (DS13).
The data are from Dick and Shock, 2011 and 2013.
They are used in the vignette Hot-spring proteins in CHNOSZ.
microbial.aa.csv
Overall protein compositions of microbial species reported to be positively or negatively enriched in colorectal cancer.
This file is taken from Dick, 2016.
It is used by demo("bugstab")
.
Files in refseq
contain code and results of processing NCBI Reference Sequences (RefSeq) for microbial proteins, using RefSeq release 61 of 2013-09-09:
README.txt
Instructions for producing the data files.
gencat.sh
Bash script to extract microbial protein records from the RefSeq catalog.
gi.taxid.txt
Output from above. The complete file is too large to distribute with CHNOSZ, but a portion is included in extdata/bison
to support processing example BLAST files for the Bison Pool metagenome (based on RefSeq 57, 2013-01-08).
mkfaa.sh
Combine the contents of .faa.gz files into a single FASTA file (to use e.g. for making a BLAST database).
protein.refseq.R
Calculate average amino acid composition of all proteins for each organism identified by a taxonomic ID.
trim_refseq.R
Keep only selected organism names (reduces number of taxa from 6758 to 779, helps to control package size).
protein_refseq.csv.xz
Output from above. See example in pinfo
.
taxid.names.R
Generate a table of scientific names for the provided taxids. Requires the complete names.dmp
and nodes.dmp
from NCBI taxonomy files.
taxid_names.csv.xz
Output from above.
NOTE: For backward compatibility with the example BLAST files for the Bison Pool metagenome, the packaged file merges records for taxids found in either RefSeq 57 or 61.
Certain taxids in release 57 were not located in the current RefSeq catalog, probably related to the transition to the “WP” multispecies accessions (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/announcements/WP-proteins-06.10.2013.pdf).
See example for id.blast
.
Files in supcrt
contain scripts for reading and comparing SUPCRT files (including slop98.dat and newer slop files from GEOPIG (http://geopig.asu.edu)) with the database in CHNOSZ:
read.supcrt.R
defines the function read.supcrt
that can be used to read SUPCRT files.
compare.R
uses read.supcrt
to compare data in the SUPCRT file with that in thermo$obigt
.
newnames.csv
maps names generated by read.supcrt
, based on names present in the source SUPCRT files, to names used in thermo$obigt
.
Files in taxonomy
contain taxonomic data files:
names.dmp
and nodes.dmp
are excerpts of the taxonomy files available on the NCBI ftp site (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz, accessed 2010-02-15). These files contain only the entries for Escherichia coli K-12, Saccharomyces cerevisiae, Homo sapiens, Pyrococcus furisosus and Methanocaldococcus jannaschii (taxids 83333, 4932, 9606, 186497, 243232) and the higher-ranking nodes (genus, family, etc.) in the respective lineages. See taxonomy
for examples that use these files.
Files in thermo
contain additional thermodynamic data and group additivity definitions:
Ste01.csv
and BZA10.csv
contain supplementary thermodynamic data taken from Stefansson (2001) and Bazarkina et al. (2010). They can be added to the database in the current session using add.obigt
. See add.obigt
and the vignette eos-regress.Rmd
for examples that use these files.
obigt_check.csv
contains the results of running check.obigt
to check the internal consistency of entries in the primary and supplementary databases.
RH98_Table15.csv
Group stoichiometries for high molecular weight crystalline and liquid organic compounds taken from Table 15 of Richard and Helgeson, 1998. The first three columns have the compound
name, formula
and physical state
(cr or liq). The remaining columns have the numbers of each group in the compound; the names of the groups (columns) correspond to species in thermo$obigt
. The compound named 5a(H),14a(H)-cholestane in the paper has been changed to 5a(H),14b(H)-cholestane here to match the group stoichiometry given in the table. See RH2obigt
for a function that uses this file.
DLEN67.csv
Standard Gibbs energies of formation, in kcal/mol, from Dayhoff et al., 1967, for nitrogen (N2) plus 17 compounds shown in Fig. 2 of Dayhoff et al., 1964, at 300, 500, 700 and 1000 K. See demo("wjd")
and the vignette wjd.Rmd
for examples that use this file.
Bazarkina, E. F., Zotov, A. V. and Akinfiev, N. N. (2010) Pressure-dependent stability of cadmium chloride complexes: Potentiometric measurements at 1<U+2013>1000 bar and 25<U+00B0>C. Geol. Ore Deposits 52, 167--178. https://doi.org/10.1134/S1075701510020054
Dayhoff, M. O. and Lippincott, E. R. and Eck, R. V. (1964) Thermodynamic Equilibria In Prebiological Atmospheres. Science 146, 1461--1464. https://doi.org/10.1126/science.146.3650.1461
Dayhoff, M. O. and Lippincott, E. R., Eck, R. V. and Nagarajan (1967) Thermodynamic Equilibrium In Prebiological Atmospheres of C, H, O, N, P, S, and Cl. Report SP-3040, National Aeronautics and Space Administration. http://ntrs.nasa.gov/search.jsp?R=19670017966
Dick, J. M. (2014) Average oxidation state of carbon in proteins. J. R. Soc. Interface 11, 20131095. https://doi.org/10.1098/rsif.2013.1095
Dick, J. M. (2016) Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ 4:e2238. https://doi.org/10.7717/peerj.2238
Dick, J. M. and Shock, E. L. (2011) Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring. PLoS ONE 6, e22782. https://doi.org/10.1371/journal.pone.0022782
Dick, J. M. and Shock, E. L. (2013) A metastable equilibrium model for the relative abundance of microbial phyla in a hot spring. PLoS ONE 8, e72395. https://doi.org/10.1371/journal.pone.0072395
Gattiker, A., Michoud, K., Rivoire, C., Auchincloss, A. H., Coudert, E., Lima, T., Kersey, P., Pagni, M., Sigrist, C. J. A., Lachaize, C., Veuthey, A.-L., Gasteiger, E. and Bairoch, A. (2003) Automatic annotation of microbial proteomes in Swiss-Prot. Comput. Biol. Chem. 27, 49--58. https://doi.org/10.1016/S1476-9271(02)00094-4
Gaucher, E. A., Thomson, J. M., Burgan, M. F. and Benner, S. A (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425(6955), 285--288. https://doi.org/10.1038/nature01977
Ghaemmaghami, S., Huh, W., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K. and Weissman, J. S. (2003) Global analysis of protein expression in yeast. Nature 425(6959), 737--741. https://doi.org/10.1038/nature02046
Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959), 686--691. https://doi.org/10.1038/nature02026
HAMAP system. HAMAP FTP directory, ftp://ftp.expasy.org/databases/hamap/
Hn<U+011B>dkovsk<U+00FD>, L., Wood, R. H. and Majer, V. (1996) Volumes of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 298.15 K to 705 K and pressures to 35 MPa. J. Chem. Thermodyn. 28, 125--142. https://doi.org/10.1006/jcht.1996.0011
Hn<U+011B>dkovsk<U+00FD>, L. and Wood, R. H. (1997) Apparent molar heat capacities of aqueous solutions of CH4, CO2, H2S, and NH3 at temperatures from 304 K to 704 K at a pressure of 28 MPa. J. Chem. Thermodyn. 29, 731--747. https://doi.org/10.1006/jcht.1997.0192
Ishihama, Y., Schmidt, T., Rappsilber, J., Mann, M., Hartl, F. U., Kerner, M. J. and Frishman, D. (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102. https://doi.org/10.1186/1471-2164-9-102
Joint Genome Institute (2007) Bison Pool Environmental Genome. Protein sequence files downloaded from IMG/M (http://img.jgi.doe.gov/cgi-bin/m/main.cgi?section=FindGenomes&page=findGenomes)
Privalov, P. L. and Makhatadze, G. I. (1990) Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: Protein unfolding effects. J. Mol. Biol. 213, 385--391. https://doi.org/10.1016/S0022-2836(05)80198-6
Richard, L. and Helgeson, H. C. (1998) Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochim. Cosmochim. Acta 62, 3591--3636. https://doi.org/10.1016/S0016-7037(97)00345-1
Robie, R. A. and Hemingway, B. S. (1995) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (\(10^5\) Pascals) Pressure and at Higher Temperatures. U. S. Geol. Surv., Bull. 2131, 461 p. http://www.worldcat.org/oclc/32590140
Roxby, R. and Tanford, C. (1971) Hydrogen ion titration curve of lysozyme in 6 M guanidine hydrochloride. Biochemistry 10, 3348--3352. https://doi.org/10.1021/bi00794a005
SGD project. Saccharomyces Genome Database, http://www.yeastgenome.org
Shock, E. and Canovas, P. (2010) The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids 10, 161--192. https://doi.org/10.1111/j.1468-8123.2010.00277.x
Shock, E. L., Oelkers, E. H., Johnson, J. W., Sverjensky, D. A. and Helgeson, H. C. (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 \(^{\circ}\)C and 5 kbar. J. Chem. Soc. Faraday Trans. 88, 803--826. https://doi.org/10.1039/FT9928800803
Shock, E. L. and Schulte, M. D. (1998) Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res. 103, 28513--28527. https://doi.org/10.1029/98JE02142
Stef<U+00E1>nsson, A. (2001) Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0<U+00B0>C to 350<U+00B0>C Chem. Geol. 172, 225--250. https://doi.org/10.1016/S0009-2541(00)00263-1
Tai, S. L., Boer, V. M., Daran-Lapujade, P., Walsh, M. C., de Winde, J. H., Daran, J.-M. and Pronk, J. T. (2005) Two-dimensional transcriptome analysis in chemostat cultures: Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J. Biol. Chem. 280, 437--447. https://doi.org/10.1074/jbc.M410573200
YeastGFP project. Yeast GFP Fusion Localization Database, http://yeastgfp.ucsf.edu; Current location: http://yeastgfp.yeastgenome.org