CHNOSZ (version 1.3.2)

protein: Examples of Calculations for Proteins

Description

This page contains some examples of using the functions in CHNOSZ to calculate thermodynamic properties of and make diagrams for proteins.

Arguments

Examples

Run this code
# NOT RUN {
## Standard molal entropy of a protein reaction
basis("CHNOS")
# here we provide the reaction coefficients of the 
# proteins (per protein backbone); subcrt() calculates 
# the coefficients of the basis species in the reaction
s <- subcrt(c("CSG_METTL", "CSG_METJA"), c(-1/530, 1/530),
  T=seq(0, 350, length.out=50))
# note: this uses the properties of the nonionized proteins

## logfO2-pH potential diagram
# with a charged basis, we calculate properties of ionized proteins
basis("CHNOS+")
file <- system.file("extdata/protein/DS11.csv", package = "CHNOSZ")
aa <- read.csv(file, as.is=TRUE)
aa <- aa[grep("transferase", aa$protein), ]
ip <- add.protein(aa)
a <- affinity(pH=c(0, 14), O2=c(-64, -61), T=75, iprotein=ip)
diagram(a)
title(main="Sequences for transferase at Bison Pool")

## surface-layer proteins from Methanococcus and others
## as a function of oxygen fugacity, after Dick, 2008, Fig. 5b
# to reproduce the calculations in the paper,
# use superseded data for [Met], [Gly] and [UPBB]
reset()
add.obigt("OldAA")
# make our protein list
organisms <- c("METSC", "METJA", "METFE", "HALJP", "METVO",
  "METBU", "ACEKI", "GEOSE", "BACLI", "AERSA")
proteins <- c(rep("CSG", 6), rep("SLAP", 4))
proteins <- paste(proteins, organisms, sep="_")
# load the basis species and proteins
basis("CHNOS+")
species(proteins)
# calculate affinities; we go to lower logfO2 than Dick, 2008
# and find an interesting convergence of stabilities there
a <- affinity(O2=c(-100, -65))
# try normalize=FALSE to make Fig. 5a in the paper
e <- equilibrate(a, normalize=TRUE)
d <- diagram(e, ylim=c(-5, -1), names=organisms, format.names=FALSE)
# add water stability line
abline(v=-83.1, lty=2)
title(main="Surface-layer proteins, after Dick, 2008")
# checking the geometry of the diagram
# most preominant along the x-axis
stopifnot(organisms[unique(which.pmax(e$loga.equil))] ==
  c("METFE", "METJA", "METVO", "HALJP"))
# stability order close to logfO2=-83.1
stopifnot(order(as.data.frame(e$loga.equil)[62,],
  decreasing=TRUE)==c(2, 6, 7, 5, 3, 1, 9, 8, 10, 4))
# reset thermodynamic database
reset()

## relative stabilities of bovine proteins
## as a function of temperature along a glutathione redox buffer
mod.buffer("GSH-GSSG", c("GSH","GSSG"), logact=c(-3, -7))   
basis(c("CO2", "H2O", "NH4+", "SO4-2", "H2", "H+"),
  c(-1, 0, -4, -4, 999, -7)) 
basis("H2", "GSH-GSSG")
basis("CO2", "gas")
prot <- c("CYC", "RNAS1", "BPT1", "ALBU", "INS", "PRIO")
species(prot, "BOVIN")
a <- affinity(T=c(0, 200))
# set line colors according to oxidation state of carbon
ZC <- ZC(species()$ispecies)
col <- ZC.col(ZC)
e <- equilibrate(a, normalize=TRUE)
d <- diagram(e, col=col, lwd=3)
title(main="Bovine proteins, GSH/GSSG redox buffer")
# }

Run the code above in your browser using DataCamp Workspace