Under the GLM setting for the analysis of a normally-distributed primary
outcome Y, bootstrap standard error estimates are obtained for the estimates
of the parameters
\(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \sigma_1^2, \alpha_4, \alpha_{XY}, \sigma_2^2\)
in the models
$$Y = \alpha_0 + \alpha_1 \cdot K + \alpha_2 \cdot X + \alpha_3 \cdot L + \epsilon_1, \epsilon_1 \sim N(0,\sigma_1^2)$$
$$Y^* = Y - \overline{Y} - \alpha_1 \cdot (K-\overline{K})$$
$$Y^* = \alpha_0 + \alpha_{XY} \cdot X + \epsilon_2, \epsilon_2 \sim N(0,\sigma_2^2),$$
accounting for the additional variability from the 2-stage approach.
Under the AFT setting for the analysis of a censored time-to-event primary
outcome, bootstrap standard error estimates are similarly obtained of the
parameter estimates of
\(\alpha_0, \alpha_1, \alpha_2, \alpha_3, \sigma_1, \alpha_4, \alpha_{XY}, \sigma_2^2\)