Learn R Programming

CIMTx (version 0.3.0)

iptw_multiTrt_att: Inverse probability of treatment weighting for ATT estimation (IPTW)

Description

This function implements the IPTW method when estimand is ATT. Please use our main function causal_multi_treat.R.

Usage

iptw_multiTrt_att(
  y,
  trt,
  psdat,
  method,
  trim_alpha,
  reference = parent.frame()$reference_trt,
  SL.library = parent.frame()$SL.library
)

Arguments

y

numeric vector for the binary outcome

trt

numeric vector for the treatment indicator

psdat

data frame containing the treatment indicator and covariates

method

methods for causal inference with multiple treatments, inherited from causal_multi_treat.R

trim_alpha

alpha values for IPTW weight trimming, inherited from causal_multi_treat.R

reference

Reference group for ATT

SL.library

methods specified with SL.library in Superlearner package, inherited from causal_multi_treat.R

Value

list with 2 elements for ATT effect. It contains

ATT12:

A dataframe containing the estimation, standard error, lower and upper 95% CI for RD/RR/OR

ATT13:

A dataframe containing the estimation, standard error, lower and upper 95% CI for RD/RR/OR

list with 3 elements for ATE effect. It contains
ATE12:

A dataframe containing the estimation, standard error, lower and upper 95% CI for RD/RR/OR

ATE13:

A dataframe containing the estimation, standard error, lower and upper 95% CI for RD/RR/OR

ATE23:

A dataframe containing the estimation, standard error, lower and upper 95% CI for RD/RR/OR

Examples

Run this code
# NOT RUN {
library(CIMTx)
set.seed(1)
idata = data_gen(n = 50, ratio =1,scenario = 1)
trt_ind <- as.numeric(idata$trtdat$trt_ind)
all_vars <- idata$trtdat[, -1] #exclude treatment indicator
y <- idata$Yobs
reference_trt <- 2
causal_multi_treat(y = y,trt = trt_ind,
method = "IPTW-Logistics", estimand = "ATT", reference_trt = 2)
# }

Run the code above in your browser using DataLab