Learn R Programming

CLME (version 1.0-1)

summary.clme: S3 method to summarize results for objects of class clme

Description

Summarizes the output of objects of class clme, such as those produced by constrained.lme. Prints a tabulated display of global and individual tests, as well as parameter estimates.

Usage

## S3 method for class 'clme':
summary(object, alpha=0, dec.theta=2, dec.w=3, dec.var=4, dec.p=4, ...)

Arguments

object
an object of class clme. See constrained.lme or as.clme
alpha
level of significance (produced confidence intervals for parameter estimates).
dec.theta
number of decimal places to round estimates of $\theta$ coefficients.
dec.w
number of decimal places to round test statistic values.
dec.var
number of decimal places to round estimates of $\sigma^{2}$ and $\tau^{2}$.
dec.p
number of decimal places to round p-values.
...
additional arguments (not currently implemented).

See Also

CLME-package, constrained.lme

Examples

Run this code
set.seed( 42 )

n  <- 5
P1 <- 5

X1 <- diag(P1) %x% rep(1,n)
X2 <- as.matrix( rep(1,P1) %x% runif(n , 0,2) )
U  <- rep(1,P1) %x% diag(n)
X  <- as.matrix( cbind(X1,X2) )

tsq <- 1
ssq <- 0.7

Nks <- dim(X1)[1]
Qs  <- dim(U)[2]

xi <- rnorm( sum(Qs)  , 0 , rep(sqrt(tsq) , Qs)  )
ep <- rnorm( sum(Nks) , 0 , rep(sqrt(ssq) , Nks) )  

thetas <- c(2 , 3 , 3, 3 , 4 , 2 )
Y      <- X%*%thetas + U%*%xi + ep
const  <- list(order='simple' , decreasing=FALSE)


# Note that 'nsim' has been reduced for illustration

clme.out <- constrained.lme( method='PAVA', Y=Y, X1=X1, X2=X2, U=U,
                     constraints=const , nsim=10 )

summary.clme( clme.out )

Run the code above in your browser using DataLab