# Example from Hosmer et al., 2013
# Applied Logistic Regression (3rd ed.), Chapter 4
# Variables selected to evaluate
preliminar <- c('age', 'height', 'priorfrac', 'momfrac', 'armassist')
# Variable to evaluate for potential confounding
excluded <- c('raterisk')
# Assess coefficient change after adding 'raterisk'
check_coef_change(data = glow500, yval = 'fracture', xpre = preliminar, xcheck = excluded)
Run the code above in your browser using DataLab