lda
from
the package MASS
is called for computation.
For S4
method information, see ldaCMA-methods.ldaCMA(X, y, f, learnind, models=FALSE, ...)
matrix
. Rows correspond to observations, columns to variables.data.frame
, whenf
isnotmissing (s. below).ExpressionSet
.numeric
vector.factor
.character
ifX
is anExpressionSet
that
specifies the phenotype variable.missing
, ifX
is adata.frame
and a
proper formulaf
is provided.0
to K-1
, where K
is the
total number of different classes in the learning set.X
is a data.frame
. The
left part correspond to class labels, the right to variables.missing
;
in that case, the learning set consists of all
observations and predictions are made on the
learning set.lda
from the
package MASS
cloutput
.compBoostCMA
, dldaCMA
, ElasticNetCMA
,
fdaCMA
, flexdaCMA
, gbmCMA
,
knnCMA
, LassoCMA
, nnetCMA
,
pknnCMA
, plrCMA
, pls_ldaCMA
,
pls_lrCMA
, pls_rfCMA
, pnnCMA
,
qdaCMA
, rfCMA
, scdaCMA
,
shrinkldaCMA
, svmCMA
### load Golub AML/ALL data
data(golub)
### extract class labels
golubY <- golub[,1]
### extract gene expression from first 10 genes
golubX <- as.matrix(golub[,2:11])
### select learningset
ratio <- 2/3
set.seed(111)
learnind <- sample(length(golubY), size=floor(ratio*length(golubY)))
### run LDA
ldaresult <- ldaCMA(X=golubX, y=golubY, learnind=learnind)
### show results
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)
### multiclass example:
### load Khan data
data(khan)
### extract class labels
khanY <- khan[,1]
### extract gene expression from first 10 genes
khanX <- as.matrix(khan[,2:11])
### select learningset
set.seed(111)
learnind <- sample(length(khanY), size=floor(ratio*length(khanY)))
### run LDA
ldaresult <- ldaCMA(X=khanX, y=khanY, learnind=learnind)
### show results
show(ldaresult)
ftable(ldaresult)
plot(ldaresult)
Run the code above in your browser using DataLab