Learn R Programming

CNORode (version 1.14.0)

minlpLBodeSSm: Search for the best combination of continuous parameters and logic gates.

Description

This function uses essR to search for the best set of continuous parameters and model structure. The objective function is the same as the one provided by getLBodeMINLPObjFunction.

Usage

minlpLBodeSSm(cnolist, model, ode_parameters = NULL, int_x0=NULL, indices = NULL, maxeval = Inf, maxtime = 100, ndiverse = NULL, dim_refset = NULL, local_solver = NULL, time = 1, verbose = 0, transfer_function = 3, reltol = 1e-04, atol = 0.001, maxStepSize = Inf, maxNumSteps = 1e+05, maxErrTestsFails = 50, nan_fac = 1)

Arguments

cnolist
A list containing the experimental design and data.
model
The logic model to be simulated.
ode_parameters
A list with the ODEs parameter information. Obtained with createLBodeContPars.
int_x0
Vector with initial solution for integer parameters.
indices
Indices to map data in the model. Obtained with indexFinder function from CellNOptR.
maxeval
Maximum number of evaluation in the optimization procedure.
maxtime
Maximum number of evaluation spent in optimization procedure.
ndiverse
Duration of the optinisation procedure.
dim_refset
Number of diverse initial solutions.
local_solver
Local solver to be used in SSm.
time
An integer with the index of the time point to start the simulation. Default is 1.
verbose
A logical value that triggers a set of comments.
transfer_function
The type of used transfer. Use 1 for no transfer function, 2 for Hill function and for normalized Hill function.
reltol
Relative Tolerance for numerical integration.
atol
Absolute tolerance for numerical integration.
maxStepSize
The maximum step size allowed to ODE solver.
maxNumSteps
The maximum number of internal steps between two points being sampled before the solver fails.
maxErrTestsFails
Specifies the maximum number of error test failures permitted in attempting one step.
nan_fac
A penalty for each data point the model is not able to simulate. We recommend higher than 0 and smaller that 1.

Value

LB_n
A numeric value to be used as lower bound for all parameters of type n.
LB_k
A numeric value to be used as lower bound for all parameters of type k.
LB_tau
A numeric value to be used as lower bound for all parameters of type tau.
UB_n
A numeric value to be used as upper bound for all parameters of type n.
UB_k
A numeric value to be used as upper bound for all parameters of type k.
UB_tau
A numeric value to be used as upper bound for all parameters of type tau.
default_n
The default parameter to be used for every parameter of type n.
default_k
The default parameter to be used for every parameter of type k.
default_tau
The default parameter to be used for every parameter of type tau.
LB_in
An array with the the same length as ode_parameters$parValues with lower bounds for each specific parameter.
UB_in
An array with the the same length as ode_parameters$parValues with upper bounds for each specific parameter.
opt_n
Add all parameter n to the index of parameters to be fitted.
opt_k
Add all parameter k to the index of parameters to be fitted.
opt_tau
Add all parameter tau to the index of parameters to be fitted.
random
A logical value that determines that a random solution is for the parameters to be optimised.
model
The best fitting found model structure.
smm_results
A list containing the information provided by the nonlinear optimization solver.

Details

Check CellNOptR for details about the cnolist and the model format. For more details in the configuration of the ODE solver check the CVODES manual.

See Also

CellNOptR createLBodeContPars essR

Examples

Run this code

## Not run: 
# data("ToyCNOlist",package="CNORode");
# data("ToyModel",package="CNORode");
# data("ToyIndices",package="CNORode");
# 	
# ode_parameters=createLBodeContPars(model,random=TRUE);
# 
# #Visualize initial solution
# simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,ode_parameters,indices=indices)
# ode_parameters=minlpLBodeSSm(cnolistCNORodeExample, model,ode_parameters);
# 
# model=ode_parameters$model;
# 
# #Visualize fitted solution
# simulatedData=plotLBodeFitness(cnolistCNORodeExample, model,indices=indices);
# ## End(Not run)

Run the code above in your browser using DataLab